|
Zalcman conjecture and Hankel determinant of order three for starlike and convex functions associated with shell-like curves
V. Suman Kumara, R. Bharavi Sharmab a Department of Mathematics, TSMS, Chigurumamidi, Karimnagar,
Telangana-505481, India
b Department of Mathematics, Kakatiya University, Warangal,
Telangana-506009, India
Аннотация:
The aim of this article is to estimate an upper bound of $|H_3(1)|$, the Zalcman coefficient functional for $n=3$ and $n=4$, and also to investigate the fifth, sixth, seventh coefficients of starlike and convex functions associated with shell-like curves. Similar type of outcomes are estimated for the functions $f^{-1} $ and $\frac{z}{f\left(z\right)}$.
Ключевые слова:
analytic function, function with positive real part, starlike function, subordination, Zalcman conjecture, shell-like curve, Hankel determinant.
Поступила в редакцию: 07.09.2019 Исправленный вариант: 28.02.2020 Принята в печать: 03.03.2020
Образец цитирования:
V. Suman Kumar, R. Bharavi Sharma, “Zalcman conjecture and Hankel determinant of order three for starlike and convex functions associated with shell-like curves”, Пробл. анал. Issues Anal., 9(27):2 (2020), 119–137
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/pa300 https://www.mathnet.ru/rus/pa/v27/i2/p119
|
|