|
Эта публикация цитируется в 1 научной статье (всего в 1 статье)
The analysis of bifurcation solutions of the Camassa–Holm equation by angular singularities
H. K. Kadhim, M. A. Abdul Hussain Faculty of Education for Pure Sciences,
Department of Mathematics,
University of Basrah,
Basrah, Iraq
Аннотация:
This paper studies bifurcation solutions of the Camassa–Holm equation by using the local Lyapunov–Schmidt method. The Camassa–Holm equation is studied by reduction to an ODE. We find the key function that corresponds to the functional related to this equation and defined on a new domain. The bifurcation analysis of the key function is investigated by the angular singularities. We find the parametric equation of the bifurcation set (caustic) with its geometric description. Also, the bifurcation spreading of the critical points is found.
Ключевые слова:
Camassa–Holm equation, bifurcation solutions, angular singularities, caustic.
Поступила в редакцию: 22.07.2019 Исправленный вариант: 21.01.2020 Принята в печать: 26.01.2020
Образец цитирования:
H. K. Kadhim, M. A. Abdul Hussain, “The analysis of bifurcation solutions of the Camassa–Holm equation by angular singularities”, Пробл. анал. Issues Anal., 9(27):1 (2020), 66–82
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/pa289 https://www.mathnet.ru/rus/pa/v27/i1/p66
|
Статистика просмотров: |
Страница аннотации: | 220 | PDF полного текста: | 54 | Список литературы: | 19 |
|