|
Проблемы анализа — Issues of Analysis, 2019, том 8(26), выпуск 3, страницы 187–203
(Mi pa283)
|
|
|
|
Double cosine-sine series and Nikol'skii classes in uniform metric
S. S. Volosivets Saratov State University, 83 Astrakhanskaya St.,
Saratov 410012, Russia
Аннотация:
In the this paper, we give neccessary and sufficient conditions for a function even with respect to the first argument but odd with respect to the second one
to belong to the Nikol'skii classes defined by a mixed modulus of smoothness of a mixed derivative (both have arbitrary integer orders).
These conditions involve the growth of partial sum of Fourier cosine-sine coefficients with power weights or the rate of decreasing to zero of these coefficients.
A similar problem for generalized "small" Nikol'skii classes is also treated.
Ключевые слова:
double cosine-sine series, mixed modulus of smoothness, Nikol'skii classes.
Поступила в редакцию: 03.07.2019
Образец цитирования:
S. S. Volosivets, “Double cosine-sine series and Nikol'skii classes in uniform metric”, Пробл. анал. Issues Anal., 8(26):3 (2019), 187–203
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/pa283 https://www.mathnet.ru/rus/pa/v26/i3/p187
|
Статистика просмотров: |
Страница аннотации: | 134 | PDF полного текста: | 44 | Список литературы: | 18 |
|