|
Approximation properties of some discrete Fourier sums for piecewise smooth discontinuous functions
G. G. Akniyev Dagestan Federal Research Center of the Russian Academy of Sciences, 45 Gadzhieva st., Makhachkala 367025, Russia
Аннотация:
Denote by $L_{n,\,N}(f, x)$
a trigonometric polynomial of order at most $n$ possessing the least quadratic deviation from $f$ with respect to the system
$\left\{t_k = u + \frac{2\pi k}{N}\right\}_{k=0}^{N-1}$, where $u \in \mathbb{R}$ and $n \leq N/2$.
Let $D^1$ be the space of $2\pi$-periodic piecewise continuously differentiable functions $f$
with a finite number of jump discontinuity points $-\pi = \xi_1 < \ldots < \xi_m = \pi$
and with absolutely continuous derivatives on each interval $(\xi_i, \xi_{i+1})$.
In the present article, we consider the problem of approximation of functions $f \in D^1$ by the trigonometric polynomials $L_{n,\,N}(f, x)$.
We have found the exact order estimate $\left|f(x) - L_{n,\,N}(f, x)\right| \leq c(f, \varepsilon)/n$, $\left|x - \xi_i\right| \geq \varepsilon$.
The proofs of these estimations are based on comparing of approximating properties of discrete and continuous finite Fourier series.
Ключевые слова:
function approximation, trigonometric polynomials, Fourier series.
Поступила в редакцию: 21.11.2018 Исправленный вариант: 24.09.2019 Принята в печать: 24.09.2019
Образец цитирования:
G. G. Akniyev, “Approximation properties of some discrete Fourier sums for piecewise smooth discontinuous functions”, Пробл. анал. Issues Anal., 8(26):3 (2019), 3–15
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/pa267 https://www.mathnet.ru/rus/pa/v26/i3/p3
|
Статистика просмотров: |
Страница аннотации: | 142 | PDF полного текста: | 42 | Список литературы: | 22 |
|