|
The method of normal local stabilization
A. N. Kirillovab a Institute of Applied Mathematical Research
of the Karelian Research Centre of the Russian Academy of Sciences,
11, Pushkinskaya str., Petrozavodsk 185910, Russia
b Petrozavodsk State University, 33 Lenina pr., Petrozavodsk 185910, Russia
Аннотация:
A problem of nonlinear systems stabilization is studied. Admissible controls are piecewise constant.
The notion of normal local stabilizability is proposed. A point $P$ (not necessary equilibrium) is normally locally stabilizable if
for any $\tau>0$ there exists such neighborhood $D(P;<\tau)$ of $P$ that any point $x \in D(P;<\tau)$ can be steered, in a time less than $\tau$, to any neighborhood of $P$ and remains there.
The constructive method of normal local stabilization of nonlinear autonomous systems is presented. This method involves a special sequence of contracting cylinders containing a trajectory.
A domain of attraction of a given point is constructed.
Ключевые слова:
dynamical system, positive basis, normal stabilization.
Поступила в редакцию: 01.04.2018 Исправленный вариант: 10.07.2018 Принята в печать: 14.08.2018
Образец цитирования:
A. N. Kirillov, “The method of normal local stabilization”, Пробл. анал. Issues Anal., 8(26):1 (2019), 72–83
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/pa259 https://www.mathnet.ru/rus/pa/v26/i1/p72
|
|