|
Эта публикация цитируется в 1 научной статье (всего в 1 статье)
Reduced $p$-modulus, $p$-harmonic radius and $p$-harmonic Green's mappings
B. E. Levitskii Kuban State University,
149 Stavropolskaya str., Krasnodar 350040, Russia
Аннотация:
We consider the definitions and properties of the metric characteristics of the spatial domains previously introduced by the author,
and their connection with the class of mappings, the particular case of which are the harmonic Green's mappings introduced by A. I. Janushauskas.
In determining these mappings, the role of the harmonic Green's function is played by the $p$-harmonic Green's function of the $n$-dimensional region ($1<p<\infty$),
the existence and properties of which are established by S. Kichenassamy and L. Veron.
The properties of $p$-harmonic Green mappings established in the general case are analogous to the properties of harmonic Green's mappings ($p = 2$, $n = 3$).
In particular, it is proved that the $p$-harmonic radius of the spatial domain has a geometric meaning analogous to the conformal radius of a plane domain.
Ключевые слова:
reduced $p$-modulus, $p$-harmonic inner radius, $p$-harmonic Green function, $p$-harmonic Green's mapping.
Поступила в редакцию: 19.08.2018 Исправленный вариант: 08.11.2018 Принята в печать: 12.11.2018
Образец цитирования:
B. E. Levitskii, “Reduced $p$-modulus, $p$-harmonic radius and $p$-harmonic Green's mappings”, Пробл. анал. Issues Anal., 7(25):2 (2018), 82–97
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/pa249 https://www.mathnet.ru/rus/pa/v25/i2/p82
|
Статистика просмотров: |
Страница аннотации: | 167 | PDF полного текста: | 64 | Список литературы: | 34 |
|