|
Эта публикация цитируется в 20 научных статьях (всего в 20 статьях)
The approximate solutions of fractional Volterra–Fredholm integro-differential equations by using analytical techniques
A. A. Hamoudab, K. P. Ghadlea a Department of Mathematics,
Dr. Babasaheb Ambedkar Marathwada University,
Aurangabad, 431004, India
b Department of Mathematics,
Taiz University, Taiz, Yemen
Аннотация:
This paper demonstrates a study on some significant latest innovations in the approximation techniques to find the approximate solutions of Caputo fractional Volterra–Fredholm integro-differential equations. To apply this, the study uses Adomian decomposition method and modified Laplace Adomian decomposition method. A wider applicability of these techniques is based on their reliability and reduction in the size of the computational work. This study provides analytical approximate to determine the behavior of the solution. It proves the existence and uniqueness results and convergence of the solution. In addition, it brings an example to examine the validity and applicability of the proposed techniques.
Ключевые слова:
Adomian decomposition method; Laplace transform; Volterra–Fredholm integro-differential equation; Caputo fractional derivative.
Поступила в редакцию: 19.01.2018 Исправленный вариант: 12.05.2018 Принята в печать: 14.05.2018
Образец цитирования:
A. A. Hamoud, K. P. Ghadle, “The approximate solutions of fractional Volterra–Fredholm integro-differential equations by using analytical techniques”, Пробл. анал. Issues Anal., 7(25):1 (2018), 41–58
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/pa227 https://www.mathnet.ru/rus/pa/v25/i1/p41
|
|