|
Эта публикация цитируется в 2 научных статьях (всего в 2 статьях)
Orlicz spaces of differential forms on Riemannian manifolds: duality and cohomology
Ya. A. Kopylovab a Novosibirsk State University,
2, Pirogova st., Novosibirsk 630090, Russia
b Sobolev Institute of Mathematics,
4, Akad. Koptyuga st., Novosibirsk 630090, Russia
Аннотация:
We consider Orlicz spaces of differential forms on a Riemannian manifold. A Riesz-type theorem about the functionals on Orlicz spaces of forms is proved and other duality theorems are obtained therefrom. We also extend the results on the Hölder-Poincaré duality for reduced $L_{q,p}$-cohomology by Gol'dshtein and Troyanov to $L_{\Phi_I,\Phi_{II}}$-cohomology, where $\Phi_I$ and $\Phi_{II}$ are $N$-functions of class $\Delta_2\cap\nabla_2$.
Ключевые слова:
Riemannian manifold, differential form, exterior differential, Orlicz space, Orlicz cohomology.
Поступила в редакцию: 12.05.2017 Исправленный вариант: 06.10.2017 Принята в печать: 30.08.2017
Образец цитирования:
Ya. A. Kopylov, “Orlicz spaces of differential forms on Riemannian manifolds: duality and cohomology”, Пробл. анал. Issues Anal., 6(24):2 (2017), 57–80
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/pa217 https://www.mathnet.ru/rus/pa/v24/i2/p57
|
|