|
The Damascus inequality
F. M. Dannana, S. M. Sitnikbc a Department of Basic Sciences, Arab International University,
P.O.Box 10409, Damascus , Syria
b Voronezh Institute of the Ministry of Internal Affairs of Russia,
53, Patriotov pr., Voronezh, 394065, Russia
c Peoples' Friendship University of Russia, 6, Miklukho–Maklaya st., Moscow, 117198, Russia
Аннотация:
In 2016 Prof. Fozi M. Dannan from Damascus, Syria, proposed an interesting inequality for three positive numbers with unit product. It became widely known but was not proved yet in spite of elementary formulation. In this paper we prove this inequality together with similar ones, its proof occurred to be rather complicated. We propose some proofs based on different ideas: Lagrange multipliers method, geometrical considerations, Klamkin-type inequalities for symmetric functions, usage of symmetric reduction functions of computer packages. Also some corollaries and generalizations are considered, they include cycle inequalities, triangle geometric inequalities, inequalities for arbitrary number of values and special forms of restrictions on numbers, applications to cubic equations and symmetric functions.
Ключевые слова:
cycle inequalities; Lagrange method; geometric inequalities; symmetric reduction.
Поступила в редакцию: 06.11.2016 Исправленный вариант: 04.12.2016 Принята в печать: 05.12.2016
Образец цитирования:
F. M. Dannan, S. M. Sitnik, “The Damascus inequality”, Пробл. анал. Issues Anal., 5(23):2 (2016), 3–19
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/pa198 https://www.mathnet.ru/rus/pa/v23/i2/p3
|
Статистика просмотров: |
Страница аннотации: | 3246 | PDF полного текста: | 79 | Список литературы: | 38 |
|