|
Inequalities for the Riemann–Stieltjes integral of $S$-dominated integrators with applications. I
S. S. Dragomir Victoria University, PO Box 14428, Melbourne City, MC 8001, Australia
Аннотация:
Assume that $u,v:\left[ a,b\right] \rightarrow \mathbb{R}$ are monotonic nondecreasing on the interval $\left[ a,b\right] .$ We say that the complex-valued function $h:\left[ a,b\right] \rightarrow \mathbb{C}$ is S-dominated by the pair $\left( u,v\right) $ if \begin{equation*} \left\vert h\left( y\right) -h\left( x\right) \right\vert ^{2}\leq \left[ u\left( y\right) -u\left( x\right) \right] \left[ v\left( y\right) -v\left( x\right) \right] \end{equation*} for any $x,y\in \left[ a,b\right] .$ In this paper we show amongst other that \begin{equation*} \left\vert \int_{a}^{b}f\left( t\right) dh\left( t\right) \right\vert ^{2}\leq \int_{a}^{b}\left\vert f\left( t\right) \right\vert du\left( t\right) \int_{a}^{b}\left\vert f\left( t\right) \right\vert dv\left( t\right) , \end{equation*} for any continuous function $f:\left[ a,b\right] \rightarrow \mathbb{C}$. Applications for the trapezoidal and midpoint inequalities are given. New inequalities for some Čebyšev and (CBS)-type functionals are presented. Natural applications for continuous functions of selfadjoint and unitary operators on Hilbert spaces are provided as well.
Ключевые слова:
Riemann–Stieltjes integral, functions of bounded variation, cumulative variation, selfadjoint operators, unitary operators, trapezoid and midpoint inequalities, Čebyšev and (CBS)-type functionals.
Поступила в редакцию: 14.04.2015 Исправленный вариант: 18.06.2015
Образец цитирования:
S. S. Dragomir, “Inequalities for the Riemann–Stieltjes integral of $S$-dominated integrators with applications. I”, Пробл. анал. Issues Anal., 4(22):1 (2015), 11–37
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/pa186 https://www.mathnet.ru/rus/pa/v22/i1/p11
|
Статистика просмотров: |
Страница аннотации: | 167 | PDF полного текста: | 48 | Список литературы: | 71 |
|