Russian Journal of Nonlinear Dynamics
RUS  ENG    ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ПАКЕТ AMSBIB  
Общая информация
Последний выпуск
Архив
Импакт-фактор

Поиск публикаций
Поиск ссылок

RSS
Последний выпуск
Текущие выпуски
Архивные выпуски
Что такое RSS



Rus. J. Nonlin. Dyn.:
Год:
Том:
Выпуск:
Страница:
Найти






Персональный вход:
Логин:
Пароль:
Запомнить пароль
Войти
Забыли пароль?
Регистрация


Russian Journal of Nonlinear Dynamics, 2024, том 20, номер 3, страницы 345–359
DOI: https://doi.org/10.20537/nd240905
(Mi nd898)
 

Approximate Riemann Solvers for the Soave – Redlich – Kwong Equation of State

M. R. Korolevaa, V. A. Tenenevba

a Udmurt Federal Research Center UB RAS ul. T. Baramzinoi 34, Izhevsk, 426067 Russia
b Kalashnikov Izhevsk State Technical University ul. Studencheskaya 7, Izhevsk, 426069 Russia
Список литературы:
Аннотация: Three methods for constructing an approximate Riemann solver for the Soave – Redlich – Kwong real gas model are presented: linearization of nonlinear equations, cubic interpolation, and local approximation of the equation of state by a two-term equation of state. These methods are tested by considering the problem of the decay of a discontinuity in a pipe in an axisymmetric setting for the low-molecular and high-molecular substances, including a region of nonclassical gas behavior. It is demonstrated that the linearization method is reasonable only for the testing prob- lems. The method of approximation by cubic splines is acceptable for complex three-dimensional nonstationary calculations. However, it is found that the bicubic interpolation method does not work well for flows with large pressure drops. The local approximation method is the most economical and universal for practical calculations. It has been used for numerical modeling of real gas flows through a safety valve. The results of calculations for hydrogen and water vapor in a wide range of pressure variation are presented. The method of local approximation of the equation of state allows one to describe all features of gas flows for complex problems.
Ключевые слова: Riemann problem, Godunov method, approximate solver, Soave – Redlich – Kwong equation of state
Финансовая поддержка Номер гранта
Министерство науки и высшего образования Российской Федерации 22040700011-4
The work was performed as part the research project of the Udmurt Federal Research Center of the Ural Branch of the Russian Academy of Sciences “Development and Evolution of New Research Methods in Natural, Engineering, and Socio-Humanitarian Science Based on the Technologies of Ancient Neural Networks, Machine Learning and Mathematical Modeling” (No. 22040700011-4).
Поступила в редакцию: 20.06.2024
Принята в печать: 07.08.2024
Тип публикации: Статья
MSC: 65D07, 65D15, 76N15
Язык публикации: английский
Образец цитирования: M. R. Koroleva, V. A. Tenenev, “Approximate Riemann Solvers for the Soave – Redlich – Kwong Equation of State”, Rus. J. Nonlin. Dyn., 20:3 (2024), 345–359
Цитирование в формате AMSBIB
\RBibitem{KorTen24}
\by M. R. Koroleva, V. A. Tenenev
\paper Approximate Riemann Solvers for the Soave – Redlich – Kwong Equation of State
\jour Rus. J. Nonlin. Dyn.
\yr 2024
\vol 20
\issue 3
\pages 345--359
\mathnet{http://mi.mathnet.ru/nd898}
\crossref{https://doi.org/10.20537/nd240905}
Образцы ссылок на эту страницу:
  • https://www.mathnet.ru/rus/nd898
  • https://www.mathnet.ru/rus/nd/v20/i3/p345
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Russian Journal of Nonlinear Dynamics
     
      Обратная связь:
     Пользовательское соглашение  Регистрация посетителей портала  Логотипы © Математический институт им. В. А. Стеклова РАН, 2024