Russian Journal of Nonlinear Dynamics
RUS  ENG    ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ПАКЕТ AMSBIB  
Общая информация
Последний выпуск
Архив
Импакт-фактор

Поиск публикаций
Поиск ссылок

RSS
Последний выпуск
Текущие выпуски
Архивные выпуски
Что такое RSS



Rus. J. Nonlin. Dyn.:
Год:
Том:
Выпуск:
Страница:
Найти






Персональный вход:
Логин:
Пароль:
Запомнить пароль
Войти
Забыли пароль?
Регистрация


Russian Journal of Nonlinear Dynamics, 2023, том 19, номер 3, страницы 409–435
DOI: https://doi.org/10.20537/nd230602
(Mi nd862)
 

Nonlinear engineering and robotics

Nonlinear Dynamics of a Wave Solid-State Gyroscope Taking into Account the Electrical Resistance of an Oscillation Control Circuit

D. A. Maslov

National Research University “MPEI” ul. Krasnokazarmennaya 14, Moscow, 111250 Russia
Список литературы:
Аннотация: This article is concerned with investigating the nonlinear dynamics of the cylindrical res- onator of a wave solid-state gyroscope. The nonlinearity of oscillations caused by the nonlinear properties of electrostatic control sensors is considered. This nonlinearity is derived by taking into account the finite ratio of resonator flexure to the small gap of electrostatic control sensors. The equations of the electromechanical system that in interconnected form describe the nonlinear mechanical oscillations of the gyroscope resonator and electrical oscillations in the control circuit are derived. The resulting differential equations belong to the class of Tikhonov systems, since the equation of electrical processes in the control circuit is singularly perturbed. By taking into account the low electrical resistance of the oscillation control circuit, which determines a small parameter at the derivative in the singularly perturbed equation of electrical processes, the non- linear oscillations of the wave solid-state gyroscope resonator are studied. The small parameter method is used to obtain a mathematical model of the resonator dynamics, which jointly takes into account the nonlinearity of the resonator oscillations and the electrical resistance of the oscillation control circuit. A special method is proposed to reduce the nonlinear equations of the resonator dynamics to the standard form of the system of differential equations for averaging and the equations of the dynamics of the wave solid-state gyroscope resonator are averaged. It is shown that, in the case of nonlinear oscillations, consideration of the electrical resistance of the oscillation control circuit does not affect the angular velocity of the gyroscope drift, but causes slight dissipation of the oscillations, which also leads to an insignificant correction of the resonant frequency.
Ключевые слова: wave solid-state gyroscope, nonlinear mathematical model, singularly perturbed equation, Tikhonov system, nonlinear oscillations, averaging method, drift angular velocity.
Финансовая поддержка Номер гранта
Российский научный фонд 23-21-00546
This work was supported by a grant of the Russian Science Foundation (project No. 23-21-00546).
Поступила в редакцию: 17.04.2023
Принята в печать: 22.05.2023
Тип публикации: Статья
MSC: 34K11, 70K30, 70K70
Язык публикации: английский
Образец цитирования: D. A. Maslov, “Nonlinear Dynamics of a Wave Solid-State Gyroscope Taking into Account the Electrical Resistance of an Oscillation Control Circuit”, Rus. J. Nonlin. Dyn., 19:3 (2023), 409–435
Цитирование в формате AMSBIB
\RBibitem{Mas23}
\by D. A. Maslov
\paper Nonlinear Dynamics of a Wave Solid-State Gyroscope
Taking into Account the Electrical Resistance
of an Oscillation Control Circuit
\jour Rus. J. Nonlin. Dyn.
\yr 2023
\vol 19
\issue 3
\pages 409--435
\mathnet{http://mi.mathnet.ru/nd862}
\crossref{https://doi.org/10.20537/nd230602}
Образцы ссылок на эту страницу:
  • https://www.mathnet.ru/rus/nd862
  • https://www.mathnet.ru/rus/nd/v19/i3/p409
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Russian Journal of Nonlinear Dynamics
     
      Обратная связь:
     Пользовательское соглашение  Регистрация посетителей портала  Логотипы © Математический институт им. В. А. Стеклова РАН, 2024