Russian Journal of Nonlinear Dynamics
RUS  ENG    ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ПАКЕТ AMSBIB  
Общая информация
Последний выпуск
Архив
Импакт-фактор

Поиск публикаций
Поиск ссылок

RSS
Последний выпуск
Текущие выпуски
Архивные выпуски
Что такое RSS



Rus. J. Nonlin. Dyn.:
Год:
Том:
Выпуск:
Страница:
Найти






Персональный вход:
Логин:
Пароль:
Запомнить пароль
Войти
Забыли пароль?
Регистрация


Russian Journal of Nonlinear Dynamics, 2023, том 19, номер 3, страницы 303–320
DOI: https://doi.org/10.20537/nd230603
(Mi nd855)
 

Nonlinear physics and mechanics

Kink Dynamics in the $\varphi^4$ Model with Extended Impurity

M. I. Fakhretdinova, K. Y. Samsonovb, S. V. Dmitrievcd, E. G. Ekomasova

a Ufa University of Science and Technology, ul. Zaki Validi 32, Ufa, 450076 Russia
b Tyumen State University, ul. Volodarskovo 6, Tyumen, 625003 Russia
c Institute of Molecule and Crystal Physics, pr. Oktyabrya 151, Ufa, 450075 Russia
d Polytechnic Institute (Branch) in Mirny ul. Tikhonova 5/1, Mirny, 678170 Russia
Список литературы:
Аннотация: The $\varphi^4$ theory is widely used in many areas of physics, from cosmology and elementary particle physics to biophysics and condensed matter theory. Topological defects, or kinks, in this theory describe stable, solitary wave excitations. In practice, these excitations, as they propagate, necessarily interact with impurities or imperfections in the on-site potential. In this work, we focus on the effect of the length and strength of a rectangular impurity on the kink dynamics. It is found that the interaction of a kink with an extended impurity is qualitatively similar to the interaction with a well-studied point impurity described by the delta function, but significant quantitative differences are observed. The interaction of kinks with an extended impurity described by a rectangular function is studied numerically. All possible scenarios of kink dynamics are determined and described, taking into account resonance effects. The inelastic interaction of the kink with the repulsive impurity arises only at high initial kink velocities. The dependencies of the critical and resonant velocities of the kink on the impurity parameters are found. It is shown that the critical velocity of the repulsive impurity passage is proportional to the square root of the barrier area, as in the case of the sine-Gordon equation with an impurity. It is shown that the resonant interaction in the $\varphi^4$ model with an attracting extended impurity, as well as for the case of a point impurity, in contrast to the case of the sine-Gordon equation, is due to the fact that the kink interacts not only with the impurity mode, but also with the kink’s internal mode. It is found that the dependence of the kink final velocity on the initial one has a large number of resonant windows.
Ключевые слова: Klein – Gordon equation, kink, impurity, resonant interaction.
Финансовая поддержка Номер гранта
Российский научный фонд 21-12-00229
Российский фонд фундаментальных исследований 20-31-90048
The work of S. V. D. was supported by Russian Science Foundation, Grant No. 21-12-00229. The work of E. G. E. and K. Yu. S. was supported by Russian Foundation for Basic Research, grant No. 20-31-90048.
Поступила в редакцию: 02.05.2023
Принята в печать: 22.05.2023
Тип публикации: Статья
MSC: 35C08, 35Q51
Язык публикации: английский
Образец цитирования: M. I. Fakhretdinov, K. Y. Samsonov, S. V. Dmitriev, E. G. Ekomasov, “Kink Dynamics in the $\varphi^4$ Model with Extended Impurity”, Rus. J. Nonlin. Dyn., 19:3 (2023), 303–320
Цитирование в формате AMSBIB
\RBibitem{FakSamDmi23}
\by M. I. Fakhretdinov, K. Y. Samsonov, S. V. Dmitriev, E. G. Ekomasov
\paper Kink Dynamics in the $\varphi^4$ Model with Extended Impurity
\jour Rus. J. Nonlin. Dyn.
\yr 2023
\vol 19
\issue 3
\pages 303--320
\mathnet{http://mi.mathnet.ru/nd855}
\crossref{https://doi.org/10.20537/nd230603}
Образцы ссылок на эту страницу:
  • https://www.mathnet.ru/rus/nd855
  • https://www.mathnet.ru/rus/nd/v19/i3/p303
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Russian Journal of Nonlinear Dynamics
     
      Обратная связь:
     Пользовательское соглашение  Регистрация посетителей портала  Логотипы © Математический институт им. В. А. Стеклова РАН, 2024