|
Nonlinear physics and mechanics
Analysis of Stationary Points and Bifurcations
of a Dynamically Consistent Model
of a Two-Dimensional Meandering Jet
A. A. Udalov, M. Yu. Uleysky, M. V. Budyansky Pacific Oceanological Institute of the Russian Academy of Sciences
ul. Baltiyskaya 43, Vladivostok, 690041 Russia
Аннотация:
A dynamically consistent model of a meandering jet stream with two Rossby waves obtained
using the law of conservation of potential vorticity is investigated. Stationary points are found
in the phase space of advection equations and the type of their stability is determined analyti-
cally. All topologically different flow regimes and their bifurcations are found for the stationary
model (taking into account only the first Rossby wave). The results can be used in the study
of Lagrangian transport, mixing, and chaotic advection in problems of cross-frontal transport in
geophysical flows with meandering jets.
Ключевые слова:
stationary points, separatrices reconnection, jet flow.
Поступила в редакцию: 25.04.2022 Принята в печать: 08.07.2022
Образец цитирования:
A. A. Udalov, M. Yu. Uleysky, M. V. Budyansky, “Analysis of Stationary Points and Bifurcations
of a Dynamically Consistent Model
of a Two-Dimensional Meandering Jet”, Rus. J. Nonlin. Dyn., 19:1 (2023), 49–58
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/nd838 https://www.mathnet.ru/rus/nd/v19/i1/p49
|
Статистика просмотров: |
Страница аннотации: | 50 | PDF полного текста: | 11 | Список литературы: | 16 |
|