|
Mathematical problems of nonlinearity
Formal Asymptotics of Parametric Subresonance
P. Astafyevaa, O. Kiselevb a Institute of Mathematics with Computer Centre of UFRC RAS,
Ufa State Petroleum Technological University,
ul. Kosmonavtov 1, Ufa, 450062 Russia
b Innopolis University, Institute of Mathematics with Computer Centre of UFRC RAS,
ul. Universitetskaya 1, Innopolis, 420500 Russia
Аннотация:
The article is devoted to a comprehensive study of linear equations of the second order
with an almost periodic coefficient. Using an asymptotic approach, the system of equations for
parametric subresonant growth of the amplitude of oscillations is obtained. Moreover, the time
of a turning point from the growth of the amplitude to the bounded oscillations in the slow
variable is found. Also, a comparison between the asymptotic approximation for the turning
time and the numerical one is shown.
Ключевые слова:
classical analysis and ODEs, subresonant, almost periodic function,small denominator.
Поступила в редакцию: 15.09.2022 Принята в печать: 05.12.2022
Образец цитирования:
P. Astafyeva, O. Kiselev, “Formal Asymptotics of Parametric Subresonance”, Rus. J. Nonlin. Dyn., 18:5 (2022), 927–937
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/nd834 https://www.mathnet.ru/rus/nd/v18/i5/p927
|
Статистика просмотров: |
Страница аннотации: | 40 | PDF полного текста: | 19 | Список литературы: | 13 |
|