|
Эта публикация цитируется в 2 научных статьях (всего в 2 статьях)
Nonlinear engineering and robotics
Image-Based Object Detection Approaches to be Used
in Embedded Systems for Robots Navigation
A. Ali Deeb, F. Shahhoud Bauman Moscow State Technical University,
ul. 2-ya Baumanskaya, Moscow, 105005 Russia
Аннотация:
This paper investigates the problem of object detection for real-time agents’ navigation using
embedded systems. In real-world problems, a compromise between accuracy and speed must be
found. In this paper, we consider a description of the architecture of different object detection
algorithms, such as R-CNN and YOLO, to compare them on different variants of embedded
systems using different datasets. As a result, we provide a trade-off study based on accuracy and
speed for different object detection algorithms to choose the appropriate one depending on the
specific application task.
Ключевые слова:
robot navigation, object detection, embedded systems, YOLO algorithms,
R-CNN algorithms, object semantics.
Поступила в редакцию: 15.09.2022 Принята в печать: 10.11.2022
Образец цитирования:
A. Ali Deeb, F. Shahhoud, “Image-Based Object Detection Approaches to be Used
in Embedded Systems for Robots Navigation”, Rus. J. Nonlin. Dyn., 18:5 (2022), 787–802
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/nd824 https://www.mathnet.ru/rus/nd/v18/i5/p787
|
Статистика просмотров: |
Страница аннотации: | 83 | PDF полного текста: | 50 | Список литературы: | 24 |
|