Russian Journal of Nonlinear Dynamics
RUS  ENG    ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ПАКЕТ AMSBIB  
Общая информация
Последний выпуск
Архив
Импакт-фактор

Поиск публикаций
Поиск ссылок

RSS
Последний выпуск
Текущие выпуски
Архивные выпуски
Что такое RSS



Rus. J. Nonlin. Dyn.:
Год:
Том:
Выпуск:
Страница:
Найти






Персональный вход:
Логин:
Пароль:
Запомнить пароль
Войти
Забыли пароль?
Регистрация


Russian Journal of Nonlinear Dynamics, 2022, том 18, номер 4, страницы 481–512
DOI: https://doi.org/10.20537/nd221101
(Mi nd807)
 

Nonlinear physics and mechanics

On Nonlinear Oscillations of a Time-Periodic Hamiltonian System at a 2:1:1 Resonance

O. V. Kholostovaa

Moscow Aviation Institute (National Research University) Volokolamskoe sh. 4, Moscow, 125993 Russia
Список литературы:
Аннотация: We consider the motions of a near-autonomous Hamiltonian system $2\pi$-periodic in time, with two degrees of freedom, in a neighborhood of a trivial equilibrium. A multiple parametric resonance is assumed to occur for a certain set of system parameters in the autonomous case, for which the frequencies of small linear oscillations are equal to two and one, and the resonant point of the parameter space belongs to the region of sufficient stability conditions. Under certain restrictions on the structure of the Hamiltonian of perturbed motion, nonlinear oscillations of the system in the vicinity of the equilibrium are studied for parameter values from a small neighborhood of the resonant point. Analytical boundaries of parametric resonance regions are obtained, which arise in the presence of secondary resonances in the transformed linear system (the cases of zero frequency and equal frequencies). The general case, for which the parameter values do not belong to the parametric resonance regions and their small neighborhoods, and both cases of secondary resonances are considered. The question of the existence of resonant periodic motions of the system is solved, and their linear stability is studied. Two- and three-frequency conditionally periodic motions are described. As an application, nonlinear resonant oscillations of a dynamically symmetric satellite (rigid body) relative to the center of mass in the vicinity of its cylindrical precession in a weakly elliptical orbit are investigated.
Ключевые слова: multiple parametric resonance, normalization, nonlinear oscillations, stability, periodic motions, satellite, cylindrical precession.
Финансовая поддержка Номер гранта
Российский научный фонд 19-11-00116
This research was supported by the grant of the Russian Science Foundation (project 19-11-00116) and was carried out at the Moscow Aviation Institute (National Research University).
Поступила в редакцию: 03.06.2022
Принята в печать: 19.10.2022
Реферативные базы данных:
Тип публикации: Статья
Язык публикации: английский
Образец цитирования: O. V. Kholostovaa, “On Nonlinear Oscillations of a Time-Periodic Hamiltonian System at a 2:1:1 Resonance”, Rus. J. Nonlin. Dyn., 18:4 (2022), 481–512
Цитирование в формате AMSBIB
\RBibitem{Kho22}
\by O. V. Kholostovaa
\paper On Nonlinear Oscillations of a Time-Periodic
Hamiltonian System at a 2:1:1 Resonance
\jour Rus. J. Nonlin. Dyn.
\yr 2022
\vol 18
\issue 4
\pages 481--512
\mathnet{http://mi.mathnet.ru/nd807}
\crossref{https://doi.org/10.20537/nd221101}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4527634}
Образцы ссылок на эту страницу:
  • https://www.mathnet.ru/rus/nd807
  • https://www.mathnet.ru/rus/nd/v18/i4/p481
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Russian Journal of Nonlinear Dynamics
    Статистика просмотров:
    Страница аннотации:66
    PDF полного текста:37
    Список литературы:21
     
      Обратная связь:
     Пользовательское соглашение  Регистрация посетителей портала  Логотипы © Математический институт им. В. А. Стеклова РАН, 2024