Russian Journal of Nonlinear Dynamics
RUS  ENG    ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ПАКЕТ AMSBIB  
Общая информация
Последний выпуск
Архив
Импакт-фактор

Поиск публикаций
Поиск ссылок

RSS
Последний выпуск
Текущие выпуски
Архивные выпуски
Что такое RSS



Rus. J. Nonlin. Dyn.:
Год:
Том:
Выпуск:
Страница:
Найти






Персональный вход:
Логин:
Пароль:
Запомнить пароль
Войти
Забыли пароль?
Регистрация


Russian Journal of Nonlinear Dynamics, 2022, том 18, номер 2, страницы 217–229
DOI: https://doi.org/10.20537/nd220205
(Mi nd788)
 

Nonlinear physics and mechanics

Changing the Dynamic Parameters of Localized Breather and Soliton Waves in the Sine-Gordon Model with Extended Impurity, External Force, and Decay in the Autoresonance Mode

E. G. Ekomasova, V. N. Nazarovb, K. Yu. Samsonovc

a Bashkir State University, ul. Zaki Walidi 32, 450076 Ufa, Russia
b Institute of Molecule and Crystal Physics Ufa Federal Research Centre of RAS, prosp. Oktyabrya 151, 450075 Ufa, Russia
c University of Tyumen, ul. Volodarskogo 6, 625003 Tyumen, Russia
Список литературы:
Аннотация: Possibility of changing the dynamic parameters of localized breather and soliton waves for the sine-Gordon equation in the model with extended impurity, variable external force and dissipation was investigated using the autoresonance method. The model of ferromagnetic structure consisting of two wide identical layers separated by a thin layer with modified values of magnetic anisotropy parameter was taken as a basis. Frequency of external field is a linear function of time. The sine-Gordon equation (SGE) was solved numerically using the finite differences method with explicit scheme of integration. For certain values of the extended impurity parameters a magnetic inhomogeneity in the form of magnetic breather is formed when domain wall passes through it with constant velocity. The numerical simulation showed that using special variable force and small amplitude it is possible to resonantly increase the amplitude of breather. For each case of the impurity parameters values, there is a threshold value of the magnetic field amplitude leading to resonance. Geometric parameters of thin layer also have influence on the resonance effect — for decreasing layer width the breather amplitude grows more slowly. For large layer width the translation mode of breather oscillations is also excited. For certain parameters of extended impurity, a soliton can form. For a special type of variable field with frequency linearly dependent on time, soliton is switched to antisoliton and vice versa.
Ключевые слова: autoresonance, sine-Gordon equation, spatially modulated periodic potential, impurities, kink, breather, soliton.
Финансовая поддержка Номер гранта
Министерство образования и науки Российской Федерации AAAA-A19-119022290052-9
Российский фонд фундаментальных исследований 20-31-90048
The studies by E. G. Ekomasov and K.Yu. Samsonov were supported by the Russian Foundation for Basic Research, project no. 20-31-90048. The studies by V.N.Nazarov were performed within the framework of state assignment no. AAAA-A19-119022290052-9.
Поступила в редакцию: 07.12.2021
Принята в печать: 22.03.2022
Реферативные базы данных:
Тип публикации: Статья
Язык публикации: английский
Образец цитирования: E. G. Ekomasov, V. N. Nazarov, K. Yu. Samsonov, “Changing the Dynamic Parameters of Localized Breather and Soliton Waves in the Sine-Gordon Model with Extended Impurity, External Force, and Decay in the Autoresonance Mode”, Rus. J. Nonlin. Dyn., 18:2 (2022), 217–229
Цитирование в формате AMSBIB
\RBibitem{EkoNazSam22}
\by E. G. Ekomasov, V. N. Nazarov, K. Yu. Samsonov
\paper Changing the Dynamic Parameters of Localized
Breather and Soliton Waves in the Sine-Gordon Model
with Extended Impurity, External Force, and Decay
in the Autoresonance Mode
\jour Rus. J. Nonlin. Dyn.
\yr 2022
\vol 18
\issue 2
\pages 217--229
\mathnet{http://mi.mathnet.ru/nd788}
\crossref{https://doi.org/10.20537/nd220205}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4445317}
Образцы ссылок на эту страницу:
  • https://www.mathnet.ru/rus/nd788
  • https://www.mathnet.ru/rus/nd/v18/i2/p217
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Russian Journal of Nonlinear Dynamics
    Статистика просмотров:
    Страница аннотации:85
    PDF полного текста:37
    Список литературы:27
     
      Обратная связь:
     Пользовательское соглашение  Регистрация посетителей портала  Логотипы © Математический институт им. В. А. Стеклова РАН, 2024