Russian Journal of Nonlinear Dynamics
RUS  ENG    ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ПАКЕТ AMSBIB  
Общая информация
Последний выпуск
Архив
Импакт-фактор

Поиск публикаций
Поиск ссылок

RSS
Последний выпуск
Текущие выпуски
Архивные выпуски
Что такое RSS



Rus. J. Nonlin. Dyn.:
Год:
Том:
Выпуск:
Страница:
Найти






Персональный вход:
Логин:
Пароль:
Запомнить пароль
Войти
Забыли пароль?
Регистрация


Russian Journal of Nonlinear Dynamics, 2022, том 18, номер 2, страницы 183–201
DOI: https://doi.org/10.20537/nd220103
(Mi nd786)
 

Nonlinear physics and mechanics

Nonlinear Interactions in Nanolattices Described by the Classical Morse, Biswas – Hamann and Modified Lennard – Jones Potentials

S. A. Surulerea, M. Y. Shatalova, J. O. Ehigieb, A. A. Adenijia, I. A. Fedotova

a Department of Mathematics and Statistics, Tshwane University of Technology, Private Bag X680 Pretoria 0001, Staatsartillerie Road, Pretoria West, South Africa
b Department of Mathematics, University of Lagos, University Road Lagos Akoka, Yaba 101017, Lagos, Nigeria
Список литературы:
Аннотация: The oscillatory motion in nonlinear nanolattices having different interatomic potential energy functions is investigated. Potential energies such as the classical Morse, Biswas – Hamann and modified Lennard – Jones potentials are considered as interaction potentials between atoms in one-dimensional nanolattices. Noteworthy phenomena are obtained with a nonlinear chain, for each of the potential functions considered. The generalized governing system of equations for the interaction potentials are formulated using the well-known Euler – Lagrange equation with Rayleigh’s modification. Linearized damping terms are introduced into the nonlinear chain. The nanochain has statistical attachments of 40 atoms, which are perturbed to analyze the resulting nonlinearities in the nanolattices. The range of initial points for the initial value problem (presented as second-order ordinary differential equations) largely varies, depending on the interaction potential. The nanolattices are broken at some initial point(s), with one atom falling off the slender chain or more than one atom falling off. The broken nanochain is characterized by an amplitude of vibration growing to infinity. In general, it is observed that the nonlinear effects in the interaction potentials cause growing amplitudes of vibration, accompanied by disruptions of the nanolattice or by the translation of chaotic motion into regular motion (after the introduction of linear damping). This study provides a computationally efficient approach for understanding atomic interactions in long nanostructural components from a theoretical perspective.
Ключевые слова: nonlinear interactions, 1D lattices, Euler – Lagrange, interatomic potentials, nanostructures.
Поступила в редакцию: 04.10.2021
Принята в печать: 11.01.2022
Реферативные базы данных:
Тип публикации: Статья
MSC: 70K25, 34C15
Язык публикации: английский
Образец цитирования: S. A. Surulere, M. Y. Shatalov, J. O. Ehigie, A. A. Adeniji, I. A. Fedotov, “Nonlinear Interactions in Nanolattices Described by the Classical Morse, Biswas – Hamann and Modified Lennard – Jones Potentials”, Rus. J. Nonlin. Dyn., 18:2 (2022), 183–201
Цитирование в формате AMSBIB
\RBibitem{SurShaEhi22}
\by S. A. Surulere, M. Y. Shatalov, J. O. Ehigie, A. A. Adeniji, I. A. Fedotov
\paper Nonlinear Interactions in Nanolattices Described
by the Classical Morse, Biswas – Hamann
and Modified Lennard – Jones Potentials
\jour Rus. J. Nonlin. Dyn.
\yr 2022
\vol 18
\issue 2
\pages 183--201
\mathnet{http://mi.mathnet.ru/nd786}
\crossref{https://doi.org/10.20537/nd220103}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4445315}
Образцы ссылок на эту страницу:
  • https://www.mathnet.ru/rus/nd786
  • https://www.mathnet.ru/rus/nd/v18/i2/p183
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Russian Journal of Nonlinear Dynamics
    Статистика просмотров:
    Страница аннотации:68
    PDF полного текста:21
    Список литературы:17
     
      Обратная связь:
     Пользовательское соглашение  Регистрация посетителей портала  Логотипы © Математический институт им. В. А. Стеклова РАН, 2024