Russian Journal of Nonlinear Dynamics
RUS  ENG    ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ПАКЕТ AMSBIB  
Общая информация
Последний выпуск
Архив
Импакт-фактор

Поиск публикаций
Поиск ссылок

RSS
Последний выпуск
Текущие выпуски
Архивные выпуски
Что такое RSS



Rus. J. Nonlin. Dyn.:
Год:
Том:
Выпуск:
Страница:
Найти






Персональный вход:
Логин:
Пароль:
Запомнить пароль
Войти
Забыли пароль?
Регистрация


Russian Journal of Nonlinear Dynamics, 2021, том 17, номер 4, страницы 437–451
DOI: https://doi.org/10.20537/nd210406
(Mi nd769)
 

Эта публикация цитируется в 1 научной статье (всего в 1 статье)

Nonlinear physics and mechanics

Qualitative Analysis of the Dynamics of a Trailed Wheeled Vehicle with Periodic Excitation

E. A. Mikishaninaab

a Steklov Mathematical Institute of the Russian Academy of Sciences, ul. Gubkina 8, 119991 Moscow, Russia
b Chuvash State University, Moskovskii pr. 15, 428015 Cheboksary, Russia
Список литературы:
Аннотация: This article examines the dynamics of the movement of a wheeled vehicle consisting of two links (trolleys). The trolleys are articulated by a frame. One wheel pair is fixed on each link. Periodic excitation is created in the system due to the movement of a pair of masses along the axis of the first trolley. The center of mass of the second link coincides with the geometric center of the wheelset. The center of mass of the first link can be shifted along the axis relative to the geometric center of the wheelset. The movement of point masses does not change the center of mass of the trolley itself. Based on the joint solution of the Lagrange equations of motion with undetermined multipliers and time derivatives of nonholonomic coupling equations, a reduced system of differential equations is obtained, which is generally nonautonomous. A qualitative analysis of the dynamics of the system is carried out in the absence of periodic excitation and in the presence of periodic excitation. The article proves the boundedness of the solutions of the system under study, which gives the boundedness of the linear and angular velocities of the driving link of the articulated wheeled vehicle. Based on the numerical solution of the equations of motion, graphs of the desired mechanical parameters and the trajectory of motion are constructed. In the case of an unbiased center of mass, the solutions of the system can be periodic, quasi-periodic and asymptotic. In the case of a displaced center of mass, the system has asymptotic dynamics and the mobile transport system goes into rectilinear uniform motion.
Ключевые слова: trailed wheeled vehicle, nonholonomic problem, qualitative analysis, periodic excitation, time-dependent dynamic system, stability.
Финансовая поддержка Номер гранта
Российский научный фонд 19-71-30012
This work was supported by the Russian Science Foundation (Project no. 19-71-30012).
Поступила в редакцию: 23.07.2021
Принята в печать: 01.12.2021
Реферативные базы данных:
Тип публикации: Статья
MSC: 74H40, 70F10
Язык публикации: английский
Образец цитирования: E. A. Mikishanina, “Qualitative Analysis of the Dynamics of a Trailed Wheeled Vehicle with Periodic Excitation”, Rus. J. Nonlin. Dyn., 17:4 (2021), 437–451
Цитирование в формате AMSBIB
\RBibitem{Mik21}
\by E. A. Mikishanina
\paper Qualitative Analysis of the Dynamics of a Trailed
Wheeled Vehicle with Periodic Excitation
\jour Rus. J. Nonlin. Dyn.
\yr 2021
\vol 17
\issue 4
\pages 437--451
\mathnet{http://mi.mathnet.ru/nd769}
\crossref{https://doi.org/10.20537/nd210406}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85123551972}
Образцы ссылок на эту страницу:
  • https://www.mathnet.ru/rus/nd769
  • https://www.mathnet.ru/rus/nd/v17/i4/p437
  • Эта публикация цитируется в следующих 1 статьяx:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Russian Journal of Nonlinear Dynamics
    Статистика просмотров:
    Страница аннотации:100
    PDF полного текста:53
    Список литературы:20
     
      Обратная связь:
     Пользовательское соглашение  Регистрация посетителей портала  Логотипы © Математический институт им. В. А. Стеклова РАН, 2024