Russian Journal of Nonlinear Dynamics
RUS  ENG    ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ПАКЕТ AMSBIB  
Общая информация
Последний выпуск
Архив
Импакт-фактор

Поиск публикаций
Поиск ссылок

RSS
Последний выпуск
Текущие выпуски
Архивные выпуски
Что такое RSS



Rus. J. Nonlin. Dyn.:
Год:
Том:
Выпуск:
Страница:
Найти






Персональный вход:
Логин:
Пароль:
Запомнить пароль
Войти
Забыли пароль?
Регистрация


Russian Journal of Nonlinear Dynamics, 2021, том 17, номер 3, страницы 347–360
DOI: https://doi.org/10.20537/nd210308
(Mi nd761)
 

Эта публикация цитируется в 1 научной статье (всего в 1 статье)

Nonlinear engineering and robotics

Stiffness Model Reduction for Manipulators with Double Encoders: Algebraic Approach

S. K. Mikhel, A. S. Klimchik

Innopolis University, ul. Universitetskaya 1, Innopolis, 420500 Russia
Список литературы:
Аннотация: The accuracy of the robot positioning during material processing can be improved if the deformation under the load is taken into account. A manipulator stiffness model can be obtained using various approaches which differ in the degree of detail and computational complexity. Regardless of the model, its practical application requires knowledge of the stiffness parameters of the robot components, which implies solving the identification problem.
In this work, we consider a reduced stiffness model, which assumes that the manipulator links are rigid, while the joints are compliant and include both elasticities in the joints themselves and the elastic properties of the links. This simplification reduces the accuracy of the model, but allows us to identify the stiffness parameters, which makes it suitable for practical application. In combination with a double encoders measurement system, this model allows for real-time compensation of compliance errors, that is, the deviation of the real end-effector position from the calculated one due to the deformation of the robot under load.
The paper proposes an algebraic approach to determining the parameters of the reduced model in a general form. It also demonstrates several steps that can be done to simplify computations. First, it introduces the backward semianalytical Jacobian computation technique, which allows reducing the number of operations for the manipulator with virtual joints. Second, it provides an algorithm for the calculation of the required intermediate matrices without explicit Jacobian calculation and using more compact expressions.
To compare the proposed techniques with the experimental approach, the robot deformation under load is simulated and the tool displacement is estimated. It is shown that both approaches are equivalent in terms of accuracy. While the experimental method is easier to implement, the algebraic approach allows analyzing the contribution of each link in a reduced model of elasticity. Besides, the obtained estimate of the parameters does not depend on the accuracy of measurements and configurations used in the identification process.
Ключевые слова: robot stiffness, Jacobian evaluation, identification.
Поступила в редакцию: 30.07.2021
Принята в печать: 25.08.2021
Реферативные базы данных:
Тип публикации: Статья
MSC: 74S30
Язык публикации: английский
Образец цитирования: S. K. Mikhel, A. S. Klimchik, “Stiffness Model Reduction for Manipulators with Double Encoders: Algebraic Approach”, Rus. J. Nonlin. Dyn., 17:3 (2021), 347–360
Цитирование в формате AMSBIB
\RBibitem{MikKli21}
\by S. K. Mikhel, A. S. Klimchik
\paper Stiffness Model Reduction for Manipulators with
Double Encoders: Algebraic Approach
\jour Rus. J. Nonlin. Dyn.
\yr 2021
\vol 17
\issue 3
\pages 347--360
\mathnet{http://mi.mathnet.ru/nd761}
\crossref{https://doi.org/10.20537/nd210308}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85118613106}
Образцы ссылок на эту страницу:
  • https://www.mathnet.ru/rus/nd761
  • https://www.mathnet.ru/rus/nd/v17/i3/p347
  • Эта публикация цитируется в следующих 1 статьяx:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Russian Journal of Nonlinear Dynamics
     
      Обратная связь:
     Пользовательское соглашение  Регистрация посетителей портала  Логотипы © Математический институт им. В. А. Стеклова РАН, 2024