Russian Journal of Nonlinear Dynamics
RUS  ENG    ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ПАКЕТ AMSBIB  
Общая информация
Последний выпуск
Архив
Импакт-фактор

Поиск публикаций
Поиск ссылок

RSS
Последний выпуск
Текущие выпуски
Архивные выпуски
Что такое RSS



Rus. J. Nonlin. Dyn.:
Год:
Том:
Выпуск:
Страница:
Найти






Персональный вход:
Логин:
Пароль:
Запомнить пароль
Войти
Забыли пароль?
Регистрация


Russian Journal of Nonlinear Dynamics, 2021, том 17, номер 2, страницы 221–242
DOI: https://doi.org/10.20537/nd210207
(Mi nd752)
 

Эта публикация цитируется в 1 научной статье (всего в 1 статье)

Nonlinear engineering and robotics

A Two-Contour System with Two Clusters of Different Lengths

M. V. Yashinaab, A. G. Tatasheva

a Moscow Automobile and Road Construction State Technical University (MADI), Leningradskiy prosp. 64, Moscow, 125319 Russia
b Moscow Aviation Institute (National Research University), Volokolamskoe sh. 4, Moscow, 125993 Russia
Список литературы:
Аннотация: A system belonging to the class of dynamical systems such as Buslaev contour networks is investigated. On each of the two closed contours of the system there is a segment, called a cluster, which moves with constant velocity if there are no delays. The contours have two common points called nodes. Delays in the motion of the clusters are due to the fact that two clusters cannot pass through a node simultaneously. The main characteristic we focus on is the average velocity of the clusters with delays taken into account. The contours have the same length, taken to be unity. The nodes divide each contour into parts one of which has length $d$, and the other, length $1-d$. Previously, this system was investigated under the assumption that the clusters have the same length. It turned out that the behavior of the system depends qualitatively on how the directions of motion of the clusters correlate with each other. In this paper we explore the behavior of the system in the case where the clusters differ in length.
Ключевые слова: dynamical systems, Buslaev’s countour network, spectral cycles, self-organization.
Финансовая поддержка Номер гранта
Российский фонд фундаментальных исследований 20-01-00222
This work has been supported by the RFBR, Grant No. 20-01-00222.
Поступила в редакцию: 30.11.2020
Принята в печать: 24.05.2021
Реферативные базы данных:
Тип публикации: Статья
MSC: 37A30, 37C27
Язык публикации: английский
Образец цитирования: M. V. Yashina, A. G. Tatashev, “A Two-Contour System with Two Clusters of Different Lengths”, Rus. J. Nonlin. Dyn., 17:2 (2021), 221–242
Цитирование в формате AMSBIB
\RBibitem{YasTat21}
\by M. V. Yashina, A. G. Tatashev
\paper A Two-Contour System with Two Clusters
of Different Lengths
\jour Rus. J. Nonlin. Dyn.
\yr 2021
\vol 17
\issue 2
\pages 221--242
\mathnet{http://mi.mathnet.ru/nd752}
\crossref{https://doi.org/10.20537/nd210207}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85109465186}
Образцы ссылок на эту страницу:
  • https://www.mathnet.ru/rus/nd752
  • https://www.mathnet.ru/rus/nd/v17/i2/p221
  • Эта публикация цитируется в следующих 1 статьяx:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Russian Journal of Nonlinear Dynamics
    Статистика просмотров:
    Страница аннотации:101
    PDF полного текста:32
    Список литературы:20
     
      Обратная связь:
     Пользовательское соглашение  Регистрация посетителей портала  Логотипы © Математический институт им. В. А. Стеклова РАН, 2024