Russian Journal of Nonlinear Dynamics
RUS  ENG    ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ПАКЕТ AMSBIB  
Общая информация
Последний выпуск
Архив
Импакт-фактор

Поиск публикаций
Поиск ссылок

RSS
Последний выпуск
Текущие выпуски
Архивные выпуски
Что такое RSS



Rus. J. Nonlin. Dyn.:
Год:
Том:
Выпуск:
Страница:
Найти






Персональный вход:
Логин:
Пароль:
Запомнить пароль
Войти
Забыли пароль?
Регистрация


Russian Journal of Nonlinear Dynamics, 2021, том 17, номер 1, страницы 77–102
DOI: https://doi.org/10.20537/nd210107
(Mi nd743)
 

Mathematical problems of nonlinearity

On Nonlinear Oscillations of a Near-Autonomous Hamiltonian System in the Case of Two Identical Integer or Half-Integer Frequencies

O. V. Kholostova

Moscow Aviation Institute (National Research University), Volokolamskoe sh. 4, GSP-3, A-80, Moscow, 125993 Russia
Список литературы:
Аннотация: This paper examines the motion of a time-periodic Hamiltonian system with two degrees of freedom in a neighborhood of trivial equilibrium. It is assumed that the system depends on three parameters, one of which is small; when it has zero value, the system is autonomous. Consideration is given to a set of values of the other two parameters for which, in the autonomous case, two frequencies of small oscillations of the linearized equations of perturbed motion are identical and are integer or half-integer numbers (the case of multiple parametric resonance). It is assumed that the normal form of the quadratic part of the Hamiltonian does not reduce to the sum of squares, i.e., the trivial equilibrium of the system is linearly unstable. Using a number of canonical transformations, the perturbed Hamiltonian of the system is reduced to normal form in terms through degree four in perturbations and up to various degrees in a small parameter (systems of first, second and third approximations). The structure of the regions of stability and instability of trivial equilibrium is investigated, and solutions are obtained to the problems of the existence, number, as well as (linear and nonlinear) stability of the system’s periodic motions analytic in fractional or integer powers of the small parameter. For some cases, conditionally periodic motions of the system are described. As an application, resonant periodic motions of a dynamically symmetric satellite modeled by a rigid body are constructed in a neighborhood of its steady rotation (cylindrical precession) on a weakly elliptic orbit and the problem of their stability is solved.
Ключевые слова: multiple parametric resonance, method of normal forms, stability, nonlinear oscillations, periodic motions, dynamically symmetric satellite, cylindrical precession.
Финансовая поддержка Номер гранта
Российский научный фонд 19–11–00116
This research was supported by the grant of the Russian Science Foundation (project 19–11–00116) and was carried out at the Moscow Aviation Institute (National Research University).
Поступила в редакцию: 01.02.2021
Принята в печать: 19.03.2021
Реферативные базы данных:
Тип публикации: Статья
Язык публикации: английский
Образец цитирования: O. V. Kholostova, “On Nonlinear Oscillations of a Near-Autonomous Hamiltonian System in the Case of Two Identical Integer or Half-Integer Frequencies”, Rus. J. Nonlin. Dyn., 17:1 (2021), 77–102
Цитирование в формате AMSBIB
\RBibitem{Kho21}
\by O. V. Kholostova
\paper On Nonlinear Oscillations of a Near-Autonomous
Hamiltonian System in the Case of Two Identical
Integer or Half-Integer Frequencies
\jour Rus. J. Nonlin. Dyn.
\yr 2021
\vol 17
\issue 1
\pages 77--102
\mathnet{http://mi.mathnet.ru/nd743}
\crossref{https://doi.org/10.20537/nd210107}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4240819}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85105171790}
Образцы ссылок на эту страницу:
  • https://www.mathnet.ru/rus/nd743
  • https://www.mathnet.ru/rus/nd/v17/i1/p77
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Russian Journal of Nonlinear Dynamics
    Статистика просмотров:
    Страница аннотации:140
    PDF полного текста:47
    Список литературы:42
     
      Обратная связь:
     Пользовательское соглашение  Регистрация посетителей портала  Логотипы © Математический институт им. В. А. Стеклова РАН, 2024