|
Эта публикация цитируется в 2 научных статьях (всего в 2 статьях)
Nonlinear physics and mechanics
On a Method of Introducing Local Coordinates in the Problem of the Orbital Stability of Planar Periodic Motions of a Rigid Body
B. S. Bardinab a Moscow Aviation Institute (National Research University),
Volokolamskoe sh. 4, Moscow, 125993 Russia
b Mechanical Engineering Research Institute of the Russian Academy of Sciences,
M. Kharitonyevskiy per. 4, Moscow, 101990 Russia
Аннотация:
A method is presented of constructing a nonlinear canonical change of variables which makes it possible to introduce local coordinates in a neighborhood of periodic motions of an autonomous Hamiltonian system with two degrees of freedom. The problem of the orbital stability of pendulum-like oscillations of a heavy rigid body with a fixed point in the Bobylev – Steklov case is discussed as an application. The nonlinear analysis of orbital stability is carried out including terms through degree six in the expansion of the Hamiltonian function in a neighborhood of the unperturbed periodic motion. This makes it possible to draw rigorous conclusions on orbital stability for the parameter values corresponding to degeneracy of terms of degree four in the normal form of the Hamiltonian function of equations of perturbed motion.
Ключевые слова:
rigid body, rotations, oscillations, orbital stability, Hamiltonian system, local coordinates, normal form.
Поступила в редакцию: 07.12.2020 Принята в печать: 25.12.2020
Образец цитирования:
B. S. Bardin, “On a Method of Introducing Local Coordinates in the Problem of the Orbital Stability of Planar Periodic Motions of a Rigid Body”, Rus. J. Nonlin. Dyn., 16:4 (2020), 581–594
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/nd730 https://www.mathnet.ru/rus/nd/v16/i4/p581
|
Статистика просмотров: |
Страница аннотации: | 148 | PDF полного текста: | 74 | Список литературы: | 21 |
|