Russian Journal of Nonlinear Dynamics
RUS  ENG    ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ПАКЕТ AMSBIB  
Общая информация
Последний выпуск
Архив
Импакт-фактор

Поиск публикаций
Поиск ссылок

RSS
Последний выпуск
Текущие выпуски
Архивные выпуски
Что такое RSS



Rus. J. Nonlin. Dyn.:
Год:
Том:
Выпуск:
Страница:
Найти






Персональный вход:
Логин:
Пароль:
Запомнить пароль
Войти
Забыли пароль?
Регистрация


Russian Journal of Nonlinear Dynamics, 2020, том 16, номер 3, страницы 491–515
DOI: https://doi.org/10.20537/nd200307
(Mi nd724)
 

Эта публикация цитируется в 3 научных статьях (всего в 3 статьях)

Mathematical problems of nonlinearity

Complex Envelope Variable Approximation in Nonlinear Dynamics

V. V. Smirnov, L. I. Manevitch

Federal Research Center for Chemical Physics, Russia Academy of Science, ul. Kosygina 4, Moscow, 119991 Russia
Список литературы:
Аннотация: We present the complex envelope variable approximation (CEVA) as a useful and compact method for analysis of essentially nonlinear dynamical systems. The basic idea is that the introduction of complex variables, which are analogues of the creation and annihilation operators in quantum mechanics, considerably simplifies the analysis of a number of nonlinear dynamical systems. The first stage of the procedure, in fact, does not require any additional assumptions, except for the proposition of the existence of a single-frequency stationary solution. This allows us to study both the stationary and nonstationary dynamics even in the cases when there are no small parameters in the initial problem. In particular, the CEVA method provides an analysis of nonlinear normal modes and their resonant interactions in discrete systems for a wide range of oscillation amplitudes. The dispersion relations depending on the oscillation amplitudes can be obtained in analytical form for both the conservative and the dissipative nonlinear lattices in the framework of the main-order approximation. In order to analyze the nonstationary dynamical processes, we suggest a new notion — the “slow” Hamiltonian, which allows us to generate the nonstationary equations in the slow time scale. The limiting phase trajectory, the bifurcations of which determine such processes as the energy localization in the nonlinear chains or the escape from the potential well under the action of external forces, can be also analyzed in the CEVA. A number of complex problems were studied earlier in the framework of various modifications of the method, but the accurate formulation of the CEVA with the step-by-step illustration is described here for the first time. In this paper we formulate the CEVA’s formalism and give some nontrivial examples of its application.
Ключевые слова: nonlinear dynamical systems, asymptotic methods, nonlinear normal modes, limiting phase trajectory, complex envelope approximation.
Финансовая поддержка Номер гранта
Российский научный фонд 16-13-10302
The work was supported by the Russia Science Foundation (grant RSF 16-13-10302).
Поступила в редакцию: 25.04.2020
Принята в печать: 10.08.2020
Реферативные базы данных:
Тип публикации: Статья
MSC: 70K70
Язык публикации: английский
Образец цитирования: V. V. Smirnov, L. I. Manevitch, “Complex Envelope Variable Approximation in Nonlinear Dynamics”, Rus. J. Nonlin. Dyn., 16:3 (2020), 491–515
Цитирование в формате AMSBIB
\RBibitem{SmiMan20}
\by V. V. Smirnov, L. I. Manevitch
\paper Complex Envelope Variable Approximation
in Nonlinear Dynamics
\jour Rus. J. Nonlin. Dyn.
\yr 2020
\vol 16
\issue 3
\pages 491--515
\mathnet{http://mi.mathnet.ru/nd724}
\crossref{https://doi.org/10.20537/nd200307}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85095423359}
Образцы ссылок на эту страницу:
  • https://www.mathnet.ru/rus/nd724
  • https://www.mathnet.ru/rus/nd/v16/i3/p491
  • Эта публикация цитируется в следующих 3 статьяx:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Russian Journal of Nonlinear Dynamics
     
      Обратная связь:
     Пользовательское соглашение  Регистрация посетителей портала  Логотипы © Математический институт им. В. А. Стеклова РАН, 2025