Russian Journal of Nonlinear Dynamics
RUS  ENG    ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ПАКЕТ AMSBIB  
Общая информация
Последний выпуск
Архив
Импакт-фактор

Поиск публикаций
Поиск ссылок

RSS
Последний выпуск
Текущие выпуски
Архивные выпуски
Что такое RSS



Rus. J. Nonlin. Dyn.:
Год:
Том:
Выпуск:
Страница:
Найти






Персональный вход:
Логин:
Пароль:
Запомнить пароль
Войти
Забыли пароль?
Регистрация


Russian Journal of Nonlinear Dynamics, 2020, том 16, номер 3, страницы 437–451
DOI: https://doi.org/10.20537/nd200303
(Mi nd720)
 

Nonlinear physics and mechanics

Analysis of Special Cases in the Study of Bifurcations of Periodic Solutions of the Ikeda Equation

E. P. Kubyshkin, A. R. Moriakova

P.G.Demidov Yaroslavl State University, ul. Sovietskaya 14, Yaroslavl, 150000 Russia
Список литературы:
Аннотация: This paper deals with bifurcations from the equilibrium states of periodic solutions of the Ikeda equation, which is well known in nonlinear optics as an equation with a delayed argument, in two special cases that have not been considered previously. Written in a characteristic time scale, the equation contains a small parameter with a derivative, which makes it singular. Both cases share a single mechanism of the loss of stability of equilibrium states under changes of the parameters of the equation associated with the passage of a countable number of roots of the characteristic equation through the imaginary axis of the complex plane, which are in this case in certain resonant relations. It is shown that the behavior of solutions of the equation with initial conditions from fixed neighborhoods of the studied equilibrium states in the phase space of the equation is described by countable systems of nonlinear ordinary differential equations that have a minimal structure and are called the normal form of the equation in the vicinity of the studied equilibrium state. An algorithm for constructing such systems of equations is developed. These systems of equations allow us to single out one “fast” variable and a countable number of “slow” variables, which makes it possible to apply the averaging method to the systems of equations obtained. Equilibrium states of the averaged system of equations of “slow” variables in the original equation correspond to periodic solutions of the same nature of sustainability. In the special cases under consideration, the possibility of simultaneous bifurcation from equilibrium states of a large number of stable periodic solutions (multistability bifurcation) and evolution of these periodic solutions to chaotic attractors with changing bifurcation parameters is shown. One of the special cases is associated with the formation of paired equilibrium states (a stable and an unstable one). An analysis of bifurcations in this case provides an explanation of the formation of the “boiling points of trajectories”, when a periodic solution arises “out of nothing” at some point in the phase space under changes of the parameters of the equation and quickly becomes chaotic.
Ключевые слова: Ikeda equation, periodic solutions, bifurcation of multistability, chaotic multistability.
Финансовая поддержка Номер гранта
Министерство образования и науки Российской Федерации OP-2G-01-2019)
The work was carried out with the financial support of the P. G. Demidov Yaroslavl State University development Program for the period 2017-2021 (task OP-2G-01-2019).
Поступила в редакцию: 17.11.2019
Принята в печать: 18.05.2020
Реферативные базы данных:
Тип публикации: Статья
Язык публикации: английский
Образец цитирования: E. P. Kubyshkin, A. R. Moriakova, “Analysis of Special Cases in the Study of Bifurcations of Periodic Solutions of the Ikeda Equation”, Rus. J. Nonlin. Dyn., 16:3 (2020), 437–451
Цитирование в формате AMSBIB
\RBibitem{KubMor20}
\by E. P. Kubyshkin, A. R. Moriakova
\paper Analysis of Special Cases
in the Study of Bifurcations
of Periodic Solutions of the Ikeda Equation
\jour Rus. J. Nonlin. Dyn.
\yr 2020
\vol 16
\issue 3
\pages 437--451
\mathnet{http://mi.mathnet.ru/nd720}
\crossref{https://doi.org/10.20537/nd200303}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4159466}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85095428967}
Образцы ссылок на эту страницу:
  • https://www.mathnet.ru/rus/nd720
  • https://www.mathnet.ru/rus/nd/v16/i3/p437
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Russian Journal of Nonlinear Dynamics
     
      Обратная связь:
     Пользовательское соглашение  Регистрация посетителей портала  Логотипы © Математический институт им. В. А. Стеклова РАН, 2025