|
Эта публикация цитируется в 1 научной статье (всего в 1 статье)
Nonlinear physics and mechanics
Control of an Inverted Wheeled Pendulum
on a Soft Surface
O. M. Kiselev Institute of Mathematics with Computing Centre —
Subdivision of the Ufa Federal Research Centre of the Russian Academy of Science,
ul. Chernyshevskogo 112, Ufa, 450008 Russia
Аннотация:
The dynamics of an inverted wheeled pendulum controlled by a proportional plus integral plus derivative action controller in various cases is investigated. The properties of trajectories are studied for a pendulum stabilized on a horizontal line, an inclined straight line and on a soft horizontal line. Oscillation regions on phase portraits of dynamical systems are shown. In particular, an analysis is made of the stabilization of the pendulum on a soft surface, modeled by a differential inclusion. It is shown that there exist trajectories tending to a semistable equilibrium position in the adopted mathematical model. However, in numerical simulations, as well as in the case of real robotic devices, such trajectories turn into a limit cycle due to round-off errors and perturbations not taken into account in the model.
Ключевые слова:
pendulum, control, stability, differential inclusion.
Поступила в редакцию: 16.12.2019 Принята в печать: 19.05.2020
Образец цитирования:
O. M. Kiselev, “Control of an Inverted Wheeled Pendulum
on a Soft Surface”, Rus. J. Nonlin. Dyn., 16:3 (2020), 421–436
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/nd719 https://www.mathnet.ru/rus/nd/v16/i3/p421
|
|