Russian Journal of Nonlinear Dynamics
RUS  ENG    ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ПАКЕТ AMSBIB  
Общая информация
Последний выпуск
Архив
Импакт-фактор

Поиск публикаций
Поиск ссылок

RSS
Последний выпуск
Текущие выпуски
Архивные выпуски
Что такое RSS



Rus. J. Nonlin. Dyn.:
Год:
Том:
Выпуск:
Страница:
Найти






Персональный вход:
Логин:
Пароль:
Запомнить пароль
Войти
Забыли пароль?
Регистрация


Russian Journal of Nonlinear Dynamics, 2020, том 16, номер 1, страницы 115–131
DOI: https://doi.org/10.20537/nd200110
(Mi nd701)
 

Эта публикация цитируется в 6 научных статьях (всего в 6 статьях)

Nonlinear physics and mechanics

On Global Trajectory Tracking Control for an Omnidirectional Mobile Robot with a Displaced Center of Mass

A. S. Andreev, O. A. Peregudova

Ulyanovsk State University, ul. Lva Tolstogo 42, Ulyanovsk, 432000 Russia
Список литературы:
Аннотация: This paper addresses the trajectory tracking control design of an omnidirectional mobile robot with a center of mass displaced from the geometrical center of the robot platform. Due to the high maneuverability provided by omniwheels, such robots are widely used in industry to transport loads in narrow spaces. As a rule, the center of mass of the load does not coincide with the geometric center of the robot platform. This makes the trajectory tracking control problem of a robot with a displaced center of mass relevant. In this paper, two controllers are constructed that solve the problem of global trajectory tracking control of the robot. The controllers are designed based on the Lyapunov function method. The main difficulty in applying the Lyapunov function method for the trajectory tracking control problem of the robot is that the time derivative of the Lyapunov function is not definite negative, but only semidefinite negative. Moreover, the LaSalle invariance principle is not applicable in this case since the closed-loop system is a nonautonomous system of differential equations. In this paper, it is shown that the quasi-invariance principle for nonautonomous systems of differential equations is much convenient for the asymptotic stability analysis of the closed-loop system. Firstly, we construct an unbounded state feedback controller such as proportional-derivative term plus feedforward. As a result, the global uniform asymptotic stability property of the origin of the closed-loop system has been proved. Secondly, we find that, if the damping forces of the robot are large enough, then the saturated position output feedback controller solves the global trajectory tracking control problem without velocity measurements. The effectiveness of the proposed controllers has been verified through simulation tests. Namely, a comparative analysis of the bounded controller obtained and the well-known “PD+” like control scheme is carried out. It is shown that the approach proposed in this paper saves energy for control inputs. Besides, a comparative analysis of the bounded controller and its analogue constructed earlier in a cylindrical phase space is carried out. It is shown that the controller provides lower values for the root mean square error of the position and velocity of the closed-loop system.
Ключевые слова: omnidirectional mobile robot, displaced mass center, global trajectory tracking control, output position feedback, Lyapunov function method.
Финансовая поддержка Номер гранта
Российский фонд фундаментальных исследований 18-01-00702
The work was supported by the Russian Foundation for Basic Research under Grant [18-01-00702].
Поступила в редакцию: 17.09.2019
Принята в печать: 11.02.2020
Реферативные базы данных:
Тип публикации: Статья
MSC: 93C10, 93D15, 93D30
Язык публикации: английский
Образец цитирования: A. S. Andreev, O. A. Peregudova, “On Global Trajectory Tracking Control for an Omnidirectional Mobile Robot with a Displaced Center of Mass”, Rus. J. Nonlin. Dyn., 16:1 (2020), 115–131
Цитирование в формате AMSBIB
\RBibitem{AndPer20}
\by A. S. Andreev, O. A. Peregudova
\paper On Global Trajectory Tracking Control for an Omnidirectional Mobile Robot with a Displaced Center of Mass
\jour Rus. J. Nonlin. Dyn.
\yr 2020
\vol 16
\issue 1
\pages 115--131
\mathnet{http://mi.mathnet.ru/nd701}
\crossref{https://doi.org/10.20537/nd200110}
\elib{https://elibrary.ru/item.asp?id=43279236}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85084473595}
Образцы ссылок на эту страницу:
  • https://www.mathnet.ru/rus/nd701
  • https://www.mathnet.ru/rus/nd/v16/i1/p115
  • Эта публикация цитируется в следующих 6 статьяx:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Russian Journal of Nonlinear Dynamics
    Статистика просмотров:
    Страница аннотации:236
    PDF полного текста:163
    Список литературы:42
     
      Обратная связь:
     Пользовательское соглашение  Регистрация посетителей портала  Логотипы © Математический институт им. В. А. Стеклова РАН, 2024