|
Эта публикация цитируется в 3 научных статьях (всего в 3 статьях)
Nonlinear physics and mechanics
Mechanical Systems with Hyperbolic Chaotic Attractors Based on Froude Pendulums
S. P. Kuznetsovab, V. P. Kruglovbc, Yu. V. Sedovab a Udmurt State University,
ul. Universitetskaya 1, Izhevsk, 426034 Russia
b Saratov Branch of Kotel’nikov’s Institute of Radio-Engineering and Electronics of RAS,
ul. Zelenaya 38, Saratov, 410019 Russia
c Yuri Gagarin State Technical University,
ul. Politechnicheskaya 77, Saratov, 410054 Russia
Аннотация:
We discuss two mechanical systems with hyperbolic chaotic attractors of Smale – Williams type. Both models are based on Froude pendulums. The first system is composed of two coupled Froude pendulums with alternating periodic braking. The second system is Froude pendulum with time-delayed feedback and periodic braking. We demonstrate by means of numerical simulations that the proposed models have chaotic attractors of Smale – Williams type. We specify regions of parameter values at which the dynamics corresponds to the Smale – Williams solenoid. We check numerically the hyperbolicity of the attractors.
Ключевые слова:
hyperbolic chaotic attractors, Smale – Williams solenoid, Bernoulli map.
Поступила в редакцию: 14.06.2019 Принята в печать: 09.09.2019
Образец цитирования:
S. P. Kuznetsov, V. P. Kruglov, Yu. V. Sedova, “Mechanical Systems with Hyperbolic Chaotic Attractors Based on Froude Pendulums”, Rus. J. Nonlin. Dyn., 16:1 (2020), 51–58
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/nd695 https://www.mathnet.ru/rus/nd/v16/i1/p51
|
Статистика просмотров: |
Страница аннотации: | 122 | PDF полного текста: | 70 | Список литературы: | 28 |
|