|
Nonlinear physics and mechanics
Dynamics of a System of Two Simple Self-Excited Oscillators with Delayed Step-by-Step Feedback
D. S. Kashchenko, S. A. Kashchenko P.G.Demidov Yaroslavl State University,
ul. Sovetskaya 14, Yaroslavl, 150003 Russia
Аннотация:
This paper studies the dynamics of a system of two coupled self-excited oscillators of first order with on-off delayed feedback using numerical and analytical methods. Regions of “fast” and “long” synchronization are identified in the parameter space, and the problem of synchronization on an unstable cycle is examined. For small coupling coefficients it is shown by analytical methods that the dynamics of the initial system is determined by the dynamics of a special one-dimensional map.
Ключевые слова:
stability, dynamics, relaxation cycles, irregular oscillations.
Поступила в редакцию: 26.08.2019 Принята в печать: 04.02.2020
Образец цитирования:
D. S. Kashchenko, S. A. Kashchenko, “Dynamics of a System of Two Simple Self-Excited Oscillators with Delayed Step-by-Step Feedback”, Rus. J. Nonlin. Dyn., 16:1 (2020), 23–43
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/nd693 https://www.mathnet.ru/rus/nd/v16/i1/p23
|
Статистика просмотров: |
Страница аннотации: | 128 | PDF полного текста: | 66 | Список литературы: | 21 |
|