|
Эта публикация цитируется в 2 научных статьях (всего в 2 статьях)
Nonlinear physics and mechanics
Some Lattice Models with Hyperbolic Chaotic Attractors
S. P. Kuznetsovab a Udmurt State University,
ul. Universitetskaya 1, Izhevsk, 426034 Russia
b Saratov Branch of Kotel’nikov’s Institute of Radio-Engineering and Electronics of RAS,
ul. Zelenaya 38, Saratov, 410019 Russia
Аннотация:
Examples of one-dimensional lattice systems are considered, in which patterns of different spatial scales arise alternately, so that the spatial phase over a full cycle undergoes transformation according to an expanding circle map that implies the occurrence of Smale – Williams attractors in the multidimensional state space. These models can serve as a basis for design electronic generators of robust chaos within a paradigm of coupled cellular networks. One of the examples is a mechanical pendulum system interesting and demonstrative for research and educational experimental studies.
Ключевые слова:
dynamical system, chaos, attractor, Smale – Williams solenoid, Turing pattern, pendulum, parametric oscillations, cellular neural network.
Поступила в редакцию: 28.05.2019 Принята в печать: 02.09.2019
Образец цитирования:
S. P. Kuznetsov, “Some Lattice Models with Hyperbolic Chaotic Attractors”, Rus. J. Nonlin. Dyn., 16:1 (2020), 13–21
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/nd691 https://www.mathnet.ru/rus/nd/v16/i1/p13
|
Статистика просмотров: |
Страница аннотации: | 114 | PDF полного текста: | 41 | Список литературы: | 22 |
|