|
Эта публикация цитируется в 1 научной статье (всего в 1 статье)
Isoperimetric Inequalities for Moments of Inertia and Stability of Stationary Motions of a Flexible Thread
V. V. Kozlov Steklov Mathematical Institute of RAS,
ul. Gubkina 8, Moscow, 119991 Russia
Аннотация:
It is well known that the maximal value of the central moment of inertia of a closed homogeneous thread of fixed length is achieved on a curve in the form of a circle. This isoperimetric property plays a key role in investigating the stability of stationary motions of a flexible thread. A discrete variant of the isoperimetric inequality, when the mass of the thread is concentrated in a finite number of material particles, is established. An analog of the isoperimetric inequality for an inhomogeneous thread is proved.
Ключевые слова:
moment of inertia, Sundman and Wirtinger inequalities, articulated polygon.
Поступила в редакцию: 24.07.2019 Принята в печать: 23.11.2019
Образец цитирования:
V. V. Kozlov, “Isoperimetric Inequalities for Moments of Inertia and Stability of Stationary Motions of a Flexible Thread”, Rus. J. Nonlin. Dyn., 15:4 (2019), 513–523
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/nd678 https://www.mathnet.ru/rus/nd/v15/i4/p513
|
Статистика просмотров: |
Страница аннотации: | 260 | PDF полного текста: | 99 | Список литературы: | 47 |
|