Russian Journal of Nonlinear Dynamics
RUS  ENG    ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ПАКЕТ AMSBIB  
Общая информация
Последний выпуск
Архив
Импакт-фактор

Поиск публикаций
Поиск ссылок

RSS
Последний выпуск
Текущие выпуски
Архивные выпуски
Что такое RSS



Rus. J. Nonlin. Dyn.:
Год:
Том:
Выпуск:
Страница:
Найти






Персональный вход:
Логин:
Пароль:
Запомнить пароль
Войти
Забыли пароль?
Регистрация


Russian Journal of Nonlinear Dynamics, 2019, том 15, номер 3, страницы 365–380
DOI: https://doi.org/10.20537/nd190313
(Mi nd666)
 

Mathematical problems of nonlinearity

Modeling the Learning of a Spiking Neural Network with Synaptic Delays

A. S. Migalev, P. M. Gotovtsev

National Research Center “Kurchatov Institute”, pl. Akademika Kurchatova 1, Moscow, 123182 Russia
Список литературы:
Аннотация: This paper addresses the spiking (or pulsed) neural network model with synaptic time delays at dendrites. This model allows one to change the action potential generation time more precisely with the same input activity pattern. The action potential time control principle proposed previously by several researchers has been implemented in the model considered. In the neuron model the required excitatory and inhibitory presynaptic potentials are formed by weight coefficients with synaptic delays. Various neural network architectures with a long-term plasticity model are investigated. The applicability of the spike-timing-dependent plasticity based learning rule (STDP) to a neuron model with synaptic delays is considered for a more accurate positioning of action potential time. Several learning protocols with a reinforcement signal and induced activity using varieties of functions of weight change (bipolar STDP and Ricker wavelet) are used. Modeling of a single-layer neural network with the reinforcement signal modulating the weight change function amplitude has shown a limited range of available output activity. This limitation can be bypassed using the induced activity of the output neuron layer during learning. This modification of the learning protocol allows reproducing more complex output activity, including for multiple layered networks. The ability to construct desired activity on the network output on the basis of a multichannel input activity pattern was tested on single and multiple layered networks. Induced activity during learning for networks with feedback connections allows one to synchronize multichannel input spike trains with required network output. The application of the weight change function leads to association of input and output activity by the network. When the induced activity is turned off, this association, configuration on the required output, remains. Increasing the number of layers and reducing feedback connection leads to weakening of this effect, so that additional mechanisms are required to synchronize the whole network.
Ключевые слова: pulsed neural network model, spiking neural network model, synaptic plasticity, synchronization, induced activity, time delayed synapses.
Поступила в редакцию: 16.01.2019
Принята в печать: 06.07.2019
Реферативные базы данных:
Тип публикации: Статья
MSC: 68T05, 92B20
Образец цитирования: A. S. Migalev, P. M. Gotovtsev, “Modeling the Learning of a Spiking Neural Network with Synaptic Delays”, Rus. J. Nonlin. Dyn., 15:3 (2019), 365–380
Цитирование в формате AMSBIB
\RBibitem{MigGot19}
\by A. S. Migalev, P. M. Gotovtsev
\paper Modeling the Learning of a Spiking Neural Network with Synaptic Delays
\jour Rus. J. Nonlin. Dyn.
\yr 2019
\vol 15
\issue 3
\pages 365--380
\mathnet{http://mi.mathnet.ru/nd666}
\crossref{https://doi.org/10.20537/nd190313}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4021376}
Образцы ссылок на эту страницу:
  • https://www.mathnet.ru/rus/nd666
  • https://www.mathnet.ru/rus/nd/v15/i3/p365
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Russian Journal of Nonlinear Dynamics
    Статистика просмотров:
    Страница аннотации:238
    PDF полного текста:64
    Список литературы:30
     
      Обратная связь:
     Пользовательское соглашение  Регистрация посетителей портала  Логотипы © Математический институт им. В. А. Стеклова РАН, 2024