Russian Journal of Nonlinear Dynamics
RUS  ENG    ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ПАКЕТ AMSBIB  
Общая информация
Последний выпуск
Архив
Импакт-фактор

Поиск публикаций
Поиск ссылок

RSS
Последний выпуск
Текущие выпуски
Архивные выпуски
Что такое RSS



Rus. J. Nonlin. Dyn.:
Год:
Том:
Выпуск:
Страница:
Найти






Персональный вход:
Логин:
Пароль:
Запомнить пароль
Войти
Забыли пароль?
Регистрация


Russian Journal of Nonlinear Dynamics, 2019, том 15, номер 3, страницы 251–260
DOI: https://doi.org/10.20537/nd190304
(Mi nd657)
 

Эта публикация цитируется в 1 научной статье (всего в 1 статье)

Nonlinear physics and mechanics

Dynamical Model for the Anomalous Transport of a Passive Scalar in a Reverse Barotropic Jet Flow

V. P. Reutov, G. V. Rybushkina

Institute of Applied Physics, RAS, ul. Ulyanova 46, Nizhny Novgorod, 603950 Russia
Список литературы:
Аннотация: The anomalous transport of a passive scalar at the excitation of immovable chains of wave structures with closed streamlines in a barotropic reverse jet flow is studied. The analysis is performed for a plane-parallel flow in a channel between rigid walls in the presence of the beta effect and external friction. Periodic boundary conditions are set along the channel, while nonpercolation and sticking conditions are adopted on the channel walls. The equations of a barotropic (quasi-two-dimensional) flow are solved numerically using a pseudospectral method. A reverse jet with a “two-hump” asymmetric velocity profile facilitating the faster transition to the complex dynamics of the Eulerian flow fields is considered. Unlike the most developed kinematic models of anomalous transport, the basic chain of structures becomes unsteady due to the birth of supplementary perturbations at saturation of barotropic instability. A regular (multiharmonic) regime of wave generation is shown to appear due to the excitation of a new flow mode. Immovable structure chains giving rise to anomalous transport are obtained in the multiharmonic and chaotic regimes. The velocity of the chains of structures was determined by watching movies made according to the computations of the streamlines. It is revealed that the onset of anomalous transport in a regular regime is possible at essentially lower supercriticality compared to the chaotic regime. Trajectories of the tracer particles containing alternations of long flights and oscillations are drawn in the chaotic regime. The time dependences of the averaged (over ensemble) displacement of the tracer particles and its variance are obtained for two basic regimes of generation with immovable chains of structures, and the corresponding exponents of the power laws are determined. Normal advection is revealed in the regular regime, while anomalous diffusion arises in both regimes and may be classified as a “superdiffusion”.
Ключевые слова: barotropic reverse jet flow, chains of wave structures, dynamical chaos, anomalous advection and diffusion.
Финансовая поддержка Номер гранта
Российский фонд фундаментальных исследований 17-05-00747
Министерство образования и науки Российской Федерации 0035-2014-0007
This research was supported by the Russian Foundation for Basic Research (project No. 17-05-00747). The numerical simulation was funded by the Ministry of Science and Higher Education of the Russian Federation within the State task for the Institute of Applied Physics of RAS (project No. 0035-2014-0007).
Поступила в редакцию: 22.07.2019
Принята в печать: 15.08.2019
Реферативные базы данных:
Тип публикации: Статья
Образец цитирования: V. P. Reutov, G. V. Rybushkina, “Dynamical Model for the Anomalous Transport of a Passive Scalar in a Reverse Barotropic Jet Flow”, Rus. J. Nonlin. Dyn., 15:3 (2019), 251–260
Цитирование в формате AMSBIB
\RBibitem{ReuRyb19}
\by V. P. Reutov, G. V. Rybushkina
\paper Dynamical Model for the Anomalous Transport of a Passive Scalar in a Reverse Barotropic Jet Flow
\jour Rus. J. Nonlin. Dyn.
\yr 2019
\vol 15
\issue 3
\pages 251--260
\mathnet{http://mi.mathnet.ru/nd657}
\crossref{https://doi.org/10.20537/nd190304}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4021367}
Образцы ссылок на эту страницу:
  • https://www.mathnet.ru/rus/nd657
  • https://www.mathnet.ru/rus/nd/v15/i3/p251
  • Эта публикация цитируется в следующих 1 статьяx:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Russian Journal of Nonlinear Dynamics
     
      Обратная связь:
     Пользовательское соглашение  Регистрация посетителей портала  Логотипы © Математический институт им. В. А. Стеклова РАН, 2024