|
Эта публикация цитируется в 1 научной статье (всего в 1 статье)
Nonlinear physics and mechanics
Capillary Hydraulic Jump in a Viscous Jet
A. A. Safronova, A. A. Koroteevb, N. I. Filatova, N. A. Safronovac a Keldysh Research Center,
ul. Onezhskaya 8, Moscow, 125438 Russia
b Moscow Aviation Institute (National Research University),
Volokolamskoe sh. 4, Moscow, 125993 Russia
c Moscow Institute of Physics and Technology,
Institutsky per. 9, Dolgoprudny, Moscow region, 141701 Russia
Аннотация:
Stationary waves in a cylindrical jet of a viscous fluid are considered. It is shown that when the capillary pressure gradient of the term with the third derivative of the jet radius in the axial coordinate is taken into account in the expression, the previously described self-similar solutions of hydrodynamic equations arise. Solutions of the equation of stationary waves propagation are studied analytically. The form of stationary soliton-like solutions is calculated numerically. The results obtained are used to analyze the process of thinning and rupture of jets of viscous liquids.
Ключевые слова:
instability, capillary flows, viscous jet, stationary waves.
Поступила в редакцию: 29.04.2019 Принята в печать: 09.07.2019
Образец цитирования:
A. A. Safronov, A. A. Koroteev, N. I. Filatov, N. A. Safronova, “Capillary Hydraulic Jump in a Viscous Jet”, Rus. J. Nonlin. Dyn., 15:3 (2019), 221–231
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/nd655 https://www.mathnet.ru/rus/nd/v15/i3/p221
|
|