|
Эта публикация цитируется в 3 научных статьях (всего в 3 статьях)
Mathematical problems of nonlinearity
Global Dynamics of Systems Close to Hamiltonian Ones Under Nonconservative Quasi-periodic Perturbation
A. D. Morozov, K. E. Morozov Lobachevsky State University of Nizhni Novgorod,
prosp. Gagarina 23, Nizhni Novgorod 603950, Russia
Аннотация:
We study quasi-periodic nonconservative perturbations of two-dimensional Hamiltonian systems. We suppose that there exists a region $D$ filled with closed phase curves of the unperturbed system and consider the problem of global dynamics in $D$. The investigation includes examining the behavior of solutions both in $D$ (the existence of invariant tori, the finiteness of the set of splittable energy levels) and in a neighborhood of the unperturbed separatrix (splitting of the separatrix manifolds). The conditions for the existence of homoclinic solutions are stated. We illustrate the research with the Duffing – Van der Pole equation as an example.
Ключевые слова:
resonances, quasi-periodic, periodic, averaged system, phase curves, equilibrium states, limit cycles, separatrix manifolds.
Поступила в редакцию: 14.04.2019 Принята в печать: 20.06.2019
Образец цитирования:
A. D. Morozov, K. E. Morozov, “Global Dynamics of Systems Close to Hamiltonian Ones Under Nonconservative Quasi-periodic Perturbation”, Rus. J. Nonlin. Dyn., 15:2 (2019), 187–198
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/nd652 https://www.mathnet.ru/rus/nd/v15/i2/p187
|
Статистика просмотров: |
Страница аннотации: | 222 | PDF полного текста: | 54 | Список литературы: | 30 |
|