Russian Journal of Nonlinear Dynamics
RUS  ENG    ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ПАКЕТ AMSBIB  
Общая информация
Последний выпуск
Архив
Импакт-фактор

Поиск публикаций
Поиск ссылок

RSS
Последний выпуск
Текущие выпуски
Архивные выпуски
Что такое RSS



Rus. J. Nonlin. Dyn.:
Год:
Том:
Выпуск:
Страница:
Найти






Персональный вход:
Логин:
Пароль:
Запомнить пароль
Войти
Забыли пароль?
Регистрация


Russian Journal of Nonlinear Dynamics, 2019, том 15, номер 2, страницы 135–143
DOI: https://doi.org/10.20537/nd190203
(Mi nd647)
 

Nonlinear physics and mechanics

Saturation-Free Numerical Scheme for Computing the Flow Past a Lattice of Airfoils with a Sharp Edge

A. G. Petrov

Ishlinsky Institute for Problems in Mechanics of the Russian Academy of Sciences, prosp. Vernadskogo 101-1, Moscow, 119526 Russia
Список литературы:
Аннотация: The Joukowski – Chaplygin condition, which allows us to determine the circulation of the flow past contour with a sharp edge, is one of the most important achievements of S. A.Chaplygin, whose 150 birthday is celebrated this year. This research is devoted to this problem.
We consider the flow past of a lattice of airfoils by a potential fluid flow. The profile line is determined parametrically by an equation in the form of two dependences of the Cartesian coordinates on the parameter. For a smooth closed loop the Cartesian coordinates are periodic analytical functions. Their Fourier series coefficients decrease exponentially depending on the harmonic number. In the meantime, for a sharp edge loop they decrease much slower — inversely to the square of the harmonic number. Using the symmetric continuation of the profile with a sharp edge, a method of presenting it as a Fourier series with exponentially decreasing coefficients is proposed. Based on this idea, a quickly converging numerical scheme for the computation of the flow past airfoils lattice with a sharp edge by a potential fluid flow has been developed.
The problem is reduced to a linear integro-differential equation on the lattice contour, and then, using specially developed quadrature formulas, is approximated by a linear system of equations. The quadrature formulas converge exponentially with respect to the number of points on the profile and can be rather simply expressed analytically.
Thanks to its quick convergence and high accuracy, this method allows one to optimize profiles by using a direct method by any given integral characteristics. We can find the distribution of the shear stress and the breakaway point on the calculated velocity distribution on the profile from the solution of the boundary layer equation. In the method suggested we do not need to perform the difficult work of constructing the lattice. Also, the problem of scheme viscosity at high Reynolds numbers is omitted.
Ключевые слова: lattice of airfoils, potential fluid flow, sharp edge loop.
Финансовая поддержка Номер гранта
Российская академия наук - Федеральное агентство научных организаций AAAA-17-117021310382-5
Российский фонд фундаментальных исследований 17–01–00901
This research was carried out within the state assignment of FASO of Russia (state registration No. AAAA-17-117021310382-5), supported in part by RFBR (project No. 17–01–00901).
Поступила в редакцию: 25.02.2019
Принята в печать: 04.06.2019
Реферативные базы данных:
Тип публикации: Статья
MSC: 76B10
Образец цитирования: A. G. Petrov, “Saturation-Free Numerical Scheme for Computing the Flow Past a Lattice of Airfoils with a Sharp Edge”, Rus. J. Nonlin. Dyn., 15:2 (2019), 135–143
Цитирование в формате AMSBIB
\RBibitem{Pet19}
\by A. G. Petrov
\paper Saturation-Free Numerical Scheme for Computing the Flow Past a Lattice of Airfoils with a Sharp Edge
\jour Rus. J. Nonlin. Dyn.
\yr 2019
\vol 15
\issue 2
\pages 135--143
\mathnet{http://mi.mathnet.ru/nd647}
\crossref{https://doi.org/10.20537/nd190203}
\elib{https://elibrary.ru/item.asp?id=43206745}
Образцы ссылок на эту страницу:
  • https://www.mathnet.ru/rus/nd647
  • https://www.mathnet.ru/rus/nd/v15/i2/p135
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Russian Journal of Nonlinear Dynamics
     
      Обратная связь:
     Пользовательское соглашение  Регистрация посетителей портала  Логотипы © Математический институт им. В. А. Стеклова РАН, 2024