|
Эта публикация цитируется в 4 научных статьях (всего в 4 статьях)
Nonlinear physics and mechanics
Analytical Properties and Solutions of the FitzHugh – Rinzel Model
A. I. Zemlyanukhin, A. V. Bochkarev Gagarin State Technical University, ul. Politekhnicheskaya 77, Saratov, 410054 Russia
Аннотация:
The FitzHugh – Rinzel model is considered, which differs from the famous FitzHugh – Nagumo model by the presence of an additional superslow dependent variable. Analytical properties of this model are studied. The original system of equations is transformed into a third-order nonlinear ordinary differential equation. It is shown that, in the general case, the equation does not pass the Painlevé test, and the general solution cannot be represented by Laurent series. Using the singular manifold method in terms of the Schwarzian derivative, an exact particular solution in the form of a kink is constructed, and restrictions on the coefficients of the equation necessary for the existence of such a solution are revealed. An asymptotic solution is obtained that shows good agreement with the numerical one. This solution can be used to verify the results in a numerical study of the FitzHugh – Rinzel model.
Ключевые слова:
neuron, FitzHugh – Rinzel model, singular manifold, exact solution, asymptotic solution.
Поступила в редакцию: 28.11.2018 Принята в печать: 05.05.2019
Образец цитирования:
A. I. Zemlyanukhin, A. V. Bochkarev, “Analytical Properties and Solutions of the FitzHugh – Rinzel Model”, Rus. J. Nonlin. Dyn., 15:1 (2019), 3–12
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/nd635 https://www.mathnet.ru/rus/nd/v15/i1/p3
|
|