|
Mathematical problems of nonlinearity
Antipodal Points and Diameter of a Sphere
A. V. Podobryaev A. K. Ailamazyan Program Systems Institute of RAS, ul. Petra-I 4a, Veskovo, Pereslavl district, Yaroslavl region, 152021 Russia
Аннотация:
We give an example of a Riemannian manifold homeomorphic to a sphere such that its diameter cannot be realized as a distance between antipodal points. We consider a Berger sphere, i.e., a three-dimensional sphere with Riemannian metric that is compressed along the fibers of the Hopf fibration. We give a condition for a Berger sphere to have the desired property. We use our previous results on a cut locus of Berger spheres obtained by the method from geometric control theory.
Ключевые слова:
diameter, $SU_2$, Berger sphere, antipodal points, cut locus, geometric control theory.
Поступила в редакцию: 04.11.2018 Исправленный вариант: 01.12.2018
Образец цитирования:
A. V. Podobryaev, “Antipodal Points and Diameter of a Sphere”, Нелинейная динам., 14:4 (2018), 579–581
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/nd632 https://www.mathnet.ru/rus/nd/v14/i4/p579
|
Статистика просмотров: |
Страница аннотации: | 231 | PDF полного текста: | 46 | Список литературы: | 35 |
|