|
Эта публикация цитируется в 2 научных статьях (всего в 2 статьях)
Mathematical problems of nonlinearity
An Extention of Herman’s Theorem for Nonlinear Circle Maps with Two Breaks
A. Dzhalilova, D. Mayerb, S. Djalilovc, A. Aliyevd a Turin Polytechnic University, Kichik Halka yuli 17, Tashkent, 100095 Uzbekistan
b Institut für Theoretische Physik, TU Clausthal, D-38678 Clausthal-Zellerfeld, Germany
c Samarkand Institute of Economics and Service, A. Temura st. 9, Samarkand, 140100 Uzbekistan
d National University of Uzbekistan, VUZ Gorodok, Tashkent, 700174 Uzbekistan
Аннотация:
M. Herman showed that the invariant measure $\mu_h$ of a piecewise linear (PL) circle homeomorphism $h$ with two break points and an irrational rotation number $\rho_{h}$ is absolutely continuous iff the two break points belong to the same orbit. We extend Herman's result to the class P of piecewise $ C^{2+\varepsilon} $-circle maps $f$ with an irrational rotation number $\rho_f$ and two break points $ a_{0}, c_{0}$, which do not lie on the same orbit and whose total jump ratio is $\sigma_f=1$, as follows: if $\mu_f$ denotes the invariant measure of the $P$-homeomorphism $f$, then for Lebesgue almost all values of $\mu_f([a_0, c_{0}])$ the measure $\mu_f$ is singular with respect to Lebesgue measure.
Ключевые слова:
piecewise-smooth circle homeomorphism, break point, rotation number, invariant measure.
Поступила в редакцию: 10.09.2018 Принята в печать: 19.11.2018
Образец цитирования:
A. Dzhalilov, D. Mayer, S. Djalilov, A. Aliyev, “An Extention of Herman’s Theorem for Nonlinear Circle Maps with Two Breaks”, Нелинейная динам., 14:4 (2018), 553–577
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/nd631 https://www.mathnet.ru/rus/nd/v14/i4/p553
|
Статистика просмотров: |
Страница аннотации: | 233 | PDF полного текста: | 70 | Список литературы: | 37 |
|