Нелинейная динамика
RUS  ENG    ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ПАКЕТ AMSBIB  
Общая информация
Последний выпуск
Архив
Импакт-фактор

Поиск публикаций
Поиск ссылок

RSS
Последний выпуск
Текущие выпуски
Архивные выпуски
Что такое RSS



Rus. J. Nonlin. Dyn.:
Год:
Том:
Выпуск:
Страница:
Найти






Персональный вход:
Логин:
Пароль:
Запомнить пароль
Войти
Забыли пароль?
Регистрация


Нелинейная динамика, 2018, том 14, номер 4, страницы 435–451
DOI: https://doi.org/10.20537/nd180402
(Mi nd624)
 

Эта публикация цитируется в 3 научных статьях (всего в 3 статьях)

Nonlinear physics and mechanics

Smale – Williams Solenoids in a System of Coupled Bonhoeffer – van der Pol Oscillators

V. M. Doroshenkoa, V. P. Kruglovb, S. P. Kuznetsovb

a Saratov State Medical University, ul. Bolshaya Kazachia 112, Saratov, 410012 Russia
b Saratov Branch of Kotel’nikov’s Institute of Radio-Engineering and Electronics of RAS, ul. Zelenaya 38, Saratov, 410019 Russia
Список литературы:
Аннотация: The principle of constructing a new class of systems demonstrating hyperbolic chaotic attractors is proposed. It is based on using subsystems, the transfer of oscillatory excitation between which is provided resonantly due to the difference in the frequencies of small and large (relaxation) oscillations by an integer number of times, accompanied by phase transformation according to an expanding circle map. As an example, we consider a system where a Smale – Williams attractor is realized, which is based on two coupled Bonhoeffer – van der Pol oscillators. Due to the applied modulation of parameter controlling the Andronov – Hopf bifurcation, the oscillators manifest activity and suppression turn by turn. With appropriate selection of the modulation form, relaxation oscillations occur at the end of each activity stage, the fundamental frequency of which is by an integer factor $M=2,3,4, \ldots$ smaller than that of small oscillations. When the partner oscillator enters the activity stage, the oscillations start being stimulated by the $M$-th harmonic of the relaxation oscillations, so that the transformation of the oscillation phase during the modulation period corresponds to the $M$-fold expanding circle map. In the state space of the Poincaré map this corresponds to an attractor of Smale – Williams type, constructed with $M$-fold increase in the number of turns of the winding at each step of the mapping. The results of numerical studies confirming the occurrence of the hyperbolic attractors in certain parameter domains are presented, including the waveforms of the oscillations, portraits of attractors, diagrams illustrating the phase transformation according to the expanding circle map, Lyapunov exponents, and charts of dynamic regimes in parameter planes. The hyperbolic nature of the attractors is verified by numerical calculations that confirm the absence of tangencies of stable and unstable manifolds for trajectories on the attractor (“criterion of angles”). An electronic circuit is proposed that implements this principle of obtaining the hyperbolic chaos and its functioning is demonstrated using the software package Multisim.
Ключевые слова: uniformly hyperbolic attractor, Smale – Williams solenoids, Bernoulli mapping, Lyapunov exponents, Bonhoeffer – van der Pol oscillators.
Финансовая поддержка Номер гранта
Российский научный фонд 17-12-01008
Российский фонд фундаментальных исследований 16-02-00135
The work was supported by grant of RSF No 17-12-01008 (Sections 1–3, formulation of the model, numerical simulation and analysis) and by grant of RFBR No 16-02-00135 (Section 4, circuit implementation and Multisim simulation).
Поступила в редакцию: 31.08.2018
Принята в печать: 22.10.2018
Реферативные базы данных:
Тип публикации: Статья
Язык публикации: английский
Образец цитирования: V. M. Doroshenko, V. P. Kruglov, S. P. Kuznetsov, “Smale – Williams Solenoids in a System of Coupled Bonhoeffer – van der Pol Oscillators”, Нелинейная динам., 14:4 (2018), 435–451
Цитирование в формате AMSBIB
\RBibitem{DorKruKuz18}
\by V. M. Doroshenko, V. P. Kruglov, S. P. Kuznetsov
\paper Smale – Williams Solenoids in a System of Coupled Bonhoeffer – van der Pol Oscillators
\jour Нелинейная динам.
\yr 2018
\vol 14
\issue 4
\pages 435--451
\mathnet{http://mi.mathnet.ru/nd624}
\crossref{https://doi.org/10.20537/nd180402}
\elib{https://elibrary.ru/item.asp?id=36686067}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85061700133}
Образцы ссылок на эту страницу:
  • https://www.mathnet.ru/rus/nd624
  • https://www.mathnet.ru/rus/nd/v14/i4/p435
  • Эта публикация цитируется в следующих 3 статьяx:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Нелинейная динамика
    Статистика просмотров:
    Страница аннотации:208
    PDF полного текста:44
    Список литературы:36
     
      Обратная связь:
     Пользовательское соглашение  Регистрация посетителей портала  Логотипы © Математический институт им. В. А. Стеклова РАН, 2024