|
Эта публикация цитируется в 2 научных статьях (всего в 2 статьях)
Characteristics of Chaotic Regimes in a Space-distributed Gyroklystron Model with Delayed Feedback
R. M. Rozentala, O. B. Isaevabc, N. S. Ginzburga, I. V. Zotovaa, A. S. Sergeeva, A. G. Rozhnevbc a Federal Research Center, Institute of Applied Physics RAS, ul. Ul’yanova 46, Box-120, Nizhny Novgorod, Russia, 603950
b Saratov Branch of the Kotelnikov Institute of Radio Engineering and Electronics RAS, ul. Zelenaya 38, Saratov, 410019 Russia
c Saratov State University, ul. Astrakhanskaya 83, Saratov, 410012 Russia
Аннотация:
Within the framework of the nonstationary model with nonfixed field structure, we investigate the model of a 3-mm band gyroklystron with delayed feedback. It is shown that both chaotic and hyperchaotic generation regimes are possible in this system. The chaotic regime due to a Feigenbaum period-doubling cascade is characterized by one positive Lyapunov exponent. Further transition to hyperchaos is determined by the appearance of another positive exponent in the Lyapunov spectrum. The correlation dimension of the corresponding attractors reaches values of about 3.5.
Ключевые слова:
chaos, hyperchaos, Lyapunov exponents, gyroklystron.
Поступила в редакцию: 20.11.2017 Принята в печать: 11.12.2017
Образец цитирования:
R. M. Rozental, O. B. Isaeva, N. S. Ginzburg, I. V. Zotova, A. S. Sergeev, A. G. Rozhnev, “Characteristics of Chaotic Regimes in a Space-distributed Gyroklystron Model with Delayed Feedback”, Нелинейная динам., 14:2 (2018), 155–168
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/nd604 https://www.mathnet.ru/rus/nd/v14/i2/p155
|
|