|
Наносистемы: физика, химия, математика, 2014, том 5, выпуск 3, страницы 327–342
(Mi nano862)
|
|
|
|
Essential and discrete spectrum of a three-particle lattice Hamiltonian with non-local potentials
T. H. Rasulov, Z. D. Rasulova Bukhara State University, Bukhara, Uzbekistan
Аннотация:
We consider a model operator (Hamiltonian) $H$ associated with a system of three particles on a d-dimensional lattice that interact via non-local potentials. Here the kernel of non-local interaction operators has rank $n$ with $n\ge 3$. We obtain an analog of the Faddeev equation for the eigenfunctions of $H$ and describe the spectrum of $H$. It is shown that the essential spectrum of H consists the union of at most $n+1$ bounded closed intervals. We estimate the lower bound of the essential spectrum of $H$ for the case d = 1.
Ключевые слова:
three-particle lattice Hamiltonian, non-local interaction operators, Hubbard model, Faddeev equation, essential and discrete spectrum.
Поступила в редакцию: 05.05.2014
Образец цитирования:
T. H. Rasulov, Z. D. Rasulova, “Essential and discrete spectrum of a three-particle lattice Hamiltonian with non-local potentials”, Наносистемы: физика, химия, математика, 5:3 (2014), 327–342
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/nano862 https://www.mathnet.ru/rus/nano/v5/i3/p327
|
Статистика просмотров: |
Страница аннотации: | 52 | PDF полного текста: | 28 |
|