|
MATHEMATICS
Reduced second Zagreb index of product graphs
N. De Department of Basic Sciences and Humanities (Mathematics),
Calcutta Institute of Engineering and Management, Kolkata, India
Аннотация:
The reduced second Zagreb index of a graph $G$ is defined as $RM_2(G)=\sum\limits_{uv\in E(G)}(d_G(u)-1)(d_G(v)-1)$, where d$_{G}(v)$ denotes the degree of the vertex $v$ of graph $G$. Recently Furtula et al. (Furtula B., Gutman I., Ediz S. Discrete Appl. Math., 2014) characterized the maximum trees with respect to reduced second Zagreb index. The aim of this paper is to compute reduced second Zagreb index of the Cartesian product of $k\ (\ge 2)$ number of graphs and hence as a consequence the reduced second Zagreb index of some special graphs applicable in various real world problems are computed. Topological properties of different nanomaterials like nanotube, nanotorus etc. are studied here graphically in terms of the aforesaid aforementioned index.
Ключевые слова:
Reduced second Zagreb index, cartesian product of graphs, nanotube, nanotorus, Hamming graphs, Ladder graphs, Rook's graph.
Поступила в редакцию: 15.01.2020 Исправленный вариант: 05.03.2020
Образец цитирования:
N. De, “Reduced second Zagreb index of product graphs”, Наносистемы: физика, химия, математика, 11:2 (2020), 131–137
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/nano506 https://www.mathnet.ru/rus/nano/v11/i2/p131
|
Статистика просмотров: |
Страница аннотации: | 86 | PDF полного текста: | 62 |
|