|
Эта публикация цитируется в 3 научных статьях (всего в 3 статьях)
MATHEMATICS
Nonlinear standing waves on planar branched systems: shrinking into metric graph
Z. Sobirova, D. Babajanovb, D. Matrasulovb a Tashkent Financial Institute, 60A, Amir Temur Str., 100000, Tashkent, Uzbekistan
b Turin Polytechnic University in Tashkent, 17 Niyazov Str., 100095, Tashkent, Uzbekistan
Аннотация:
We treat the stationary nonlinear Schrödinger equation on two-dimensional branched domains, so-called fat graphs. The shrinking limit when the domain becomes one-dimensional metric graph is studied by using analytical estimate of the convergence of fat graph boundary conditions into those for metric graph. Detailed analysis of such convergence on the basis of numerical solution of stationary nonlinear Schrödinger equation on a fat graph is provided. The possibility for reproducing different metric graph boundary conditions studied in earlier works is shown. Practical applications of the proposed model for such problems as Bose-Einstein condensation in networks, branched optical media, DNA, conducting polymers and wave dynamics in branched capillary networks are discussed.
Ключевые слова:
metric graph, Schrödinger equation.
Поступила в редакцию: 11.08.2016 Исправленный вариант: 04.09.2016
Образец цитирования:
Z. Sobirov, D. Babajanov, D. Matrasulov, “Nonlinear standing waves on planar branched systems: shrinking into metric graph”, Наносистемы: физика, химия, математика, 8:1 (2017), 29–37
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/nano5 https://www.mathnet.ru/rus/nano/v8/i1/p29
|
Статистика просмотров: |
Страница аннотации: | 75 | PDF полного текста: | 31 |
|