|
Эта публикация цитируется в 1 научной статье (всего в 1 статье)
MATHEMATICS
Coupling of definitizable operators in Krein spaces
V. Derkacha, C. Trunkb a Department of Mathematics, Dragomanov National Pedagogical University, Pirogova 9, Kiev, 01601, Ukraine
b Institut für Mathematik, Technische Universität Ilmenau, Postfach 100565, D98684 Ilmenau, Germany
Аннотация:
Indefinite Sturm–Liouville operators defined on $\mathbb{R}$ are often considered as a coupling of two semibounded symmetric operators defined on $\mathbb{R}^+$ and $\mathbb{R}^-$, respectively. In many situations, those two semibounded symmetric operators have in a special sense good properties like a Hilbert space self-adjoint extension. In this paper, we present an abstract approach to the coupling of two (definitizable) self-adjoint operators. We obtain a characterization for the definitizability and the regularity of the critical points. Finally we study a typical class of indefinite Sturm–Liouville problems on $\mathbb{R}$.
Ключевые слова:
self-adjoint extension, symmetric operator, Krein space, locally definitizable operator, coupling of operators, boundary triple, Weyl function, regular critical point.
Поступила в редакцию: 18.01.2017 Исправленный вариант: 01.02.2017
Образец цитирования:
V. Derkach, C. Trunk, “Coupling of definitizable operators in Krein spaces”, Наносистемы: физика, химия, математика, 8:2 (2017), 166–179
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/nano22 https://www.mathnet.ru/rus/nano/v8/i2/p166
|
|