|
MATHEMATICS
Existence of the eigenvalues of a tensor sum of the Friedrichs models with rank 2 perturbation
Tulkin H. Rasulov, Bekzod I. Bahronov Bukhara State University, Bukhara, Uzbekistan
Аннотация:
In the paper we consider a tensor sum $H_{\mu,\lambda}$, $\mu,\lambda>0$ of two Friedrichs models $h_{\mu,\lambda}$ with rank two perturbation. The Hamiltonian $H_{\mu,\lambda}$ is associated with a system of three quantum particles on one-dimensional lattice. We investigate the number and location of the eigenvalues of $H_{\mu,\lambda}$. The existence of eigenvalues located respectively inside, in the gap, and below the bottom of the essential spectrum of $H_{\mu,\lambda}$ is proved.
Ключевые слова:
tensor sum, Hamiltonian, lattice, quantum particles, non-local interaction, Friedrichs model, eigenvalue, perturbation.
Поступила в редакцию: 16.01.2023 Исправленный вариант: 18.03.2023 Принята в печать: 19.03.2023
Образец цитирования:
Tulkin H. Rasulov, Bekzod I. Bahronov, “Existence of the eigenvalues of a tensor sum of the Friedrichs models with rank 2 perturbation”, Наносистемы: физика, химия, математика, 14:2 (2023), 151–157
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/nano1174 https://www.mathnet.ru/rus/nano/v14/i2/p151
|
Статистика просмотров: |
Страница аннотации: | 47 | PDF полного текста: | 10 |
|