|
Эта публикация цитируется в 4 научных статьях (всего в 4 статьях)
MATHEMATICS
Self-similar solutions of a cross-diffusion parabolic system with variable density: explicit estimates and asymptotic behaviour
M. M. Aripov, A. S. Matyakubov National University of Uzbekistan, Applied Mathematics and Computer Analysis, Universitet, 4, Tashkent, 100174, Uzbekistan
Аннотация:
In this paper, we study the properties of self-similar solutions of a cross-diffusion parabolic system. In particular, we find the
Zeldovich–Barenblatt type solution to the cross diffusive system. The asymptotic behavior of self-similar solutions are analyzed for both the slow and fast diffusive regimes. It is shown that coefficients of the main term of the asymptotic of solution satisfy some system of nonlinear algebraic equations.
Ключевые слова:
cross-diffusive system, non-divergence form, finite speed, perturbation, global solutions, asymptotic behavior, numerical analysis.
Поступила в редакцию: 25.07.2016 Исправленный вариант: 28.08.2016
Образец цитирования:
M. M. Aripov, A. S. Matyakubov, “Self-similar solutions of a cross-diffusion parabolic system with variable density: explicit estimates and asymptotic behaviour”, Наносистемы: физика, химия, математика, 8:1 (2017), 5–12
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/nano1 https://www.mathnet.ru/rus/nano/v8/i1/p5
|
Статистика просмотров: |
Страница аннотации: | 91 | PDF полного текста: | 50 |
|