|
Эта публикация цитируется в 5 научных статьях (всего в 5 статьях)
Об одном описании пространств дифференцируемых функций
А. Н. Морозов Ярославский государственный университет им. П. Г. Демидова
Аннотация:
В статье развит результат С.Н. Бернштейна, характеризующий пространство $C^k[a,b]$
средствами локальных приближений. Отрезок $[a,b]$ разбивается на непересекающиеся
полуинтервалы, и на них рассматриваются наилучшие приближения функции многочленами степени не выше $k-1$, разделенные на длины этих полуинтервалов в степени $k$. При стремлении длин полуинтервалов к нулю, поведение этих частных является критерием существования $k$-й производной функции. Теорема доказана в более сильной формулировке, а также распространена на пространства $W_p^k[a,b]$.
Библиография: 11 названий.
Поступило: 18.11.1996 Исправленный вариант: 25.01.2000
Образец цитирования:
А. Н. Морозов, “Об одном описании пространств дифференцируемых функций”, Матем. заметки, 70:5 (2001), 758–768; Math. Notes, 70:5 (2001), 688–697
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/mzm787https://doi.org/10.4213/mzm787 https://www.mathnet.ru/rus/mzm/v70/i5/p758
|
Статистика просмотров: |
Страница аннотации: | 353 | PDF полного текста: | 197 | Список литературы: | 58 | Первая страница: | 1 |
|