|
Математические заметки, 1975, том 17, выпуск 3, страницы 433–442
(Mi mzm7560)
|
|
|
|
Эта публикация цитируется в 1 научной статье (всего в 1 статье)
Обобщенные валентности
Б. С. Стечкин Математический институт им. В. А. Стеклова АН СССР
Аннотация:
Установлено, что $V(S_p,q;G)$ — совокупность всех тех ребер произвольного $n$-вершинного гиперграфа $G$, чьи пересечения с множеством $S_p$, $p$ вершин, имеют мощность $q$, удовлетворяет некоторым тождественным соотношениям; в частности, если $v(S_p,q;G)=|V(S_p,q;G)|$, то
$$
v(S_p,q;G)=\sum_{i\ge0}(-1)^iC_{q+1}^q\sum_{S_{q+i}\subset S_p}v(S_{q+i},q+i;G).
$$
В качестве приложения выводятся два новых комбинаторных тождества. Библ. 7 назв.
Поступило: 17.04.1974
Образец цитирования:
Б. С. Стечкин, “Обобщенные валентности”, Матем. заметки, 17:3 (1975), 433–442; Math. Notes, 17:3 (1975), 252–258
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/mzm7560 https://www.mathnet.ru/rus/mzm/v17/i3/p433
|
Статистика просмотров: |
Страница аннотации: | 181 | PDF полного текста: | 91 | Первая страница: | 1 |
|